Association between domestic abuse and the development of breast cancer in adult females: a retrospective UK cohort study

Sonica Minhas¹, Cory N Spencer^{1,2}, Ben Hammond¹, Jasleen Mohr¹, Krishna M Gokhale¹, Julie Taylor^{3,4}, Caroline Bradbury-Jones³, Siddhartha Bandyopadhyay⁵, Krishnarajah Nirantharakumar¹, Nicola J Adderley¹, Joht Singh Chandan¹

> ¹Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, B152TT ²Institute of Health Metrics and Evaluation, University of Washington, Seattle, WA, USA ³School of Nursing, College of Medical and Dental Sciences, University of Birmingham, B152TT ⁴Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham ⁵The Department of Economics, University of Birmingham, B152TT

Introduction

Breast cancer is the most commonly diagnosed cancer in females in the UK.¹ Both breast cancer and DA are major global public health priorities, which traditionally affect the same population (adult women).

Previous studies suggest a relationship between abuse exposure and cancer diagnosis.^{2,3} Few studies have explored the link between DA and breast cancer specifically.

A relationship between the two could be

Table 1: Risk of breast cancer diagnosis in those with	
DA exposure	

	Breast		
	Exposed	Unexposed	
Number of	93	420	N
Incident			
Outcomes			
Person-Years	84327	334789	Pei
Incidence	11.03	12.55	(p
Rate (per			per
10,000			Ha
person years)			(95%
Hazard Ratio	0.89 (0.71 – 1.11)		i
(95%			
confidence		Adju	
interval)		Ra	
p-value	0.295		co ir
Adjusted	0.87 (0.70 - 1.10)		
Hazard Ratio		*Adjuste	
(95%		deprivat	
confidence			_ , ,
interval)*			Table . those
p-value	0.250		
Adjusted	0.89 (0.71 – 1.12)		
Hazard Ratio			
(95%			
confidence			
interval)**			

Results

Table 2 Risk of breast cancer diagnosis in those with DA *exposure; incident-only cases*

	Breast Cancer	
	Exposed	Unexposed
Number of Incident	52	206
Outcomes		
Person-Years	44370	167097
Incidence Rate	11.72	12.33
(per 10,000		
person years)		
Hazard Ratio	0.96 (0.71 – 1.30)	
(95% confidence		
interval)		
p-value	0.774	
Adjusted Hazard	0.93 (0.68 - 1.27)	
Ratio (95%		
confidence		
interval)*		
p-value	0.6	51

explained by several pathways, including: 1) stress-induced activation of the hypothalamicpituitary axis (HPA); 2) adult health behaviours; and/or 3) reproductive health factors.

Aims

To explore the risk of breast cancer (primary outcome) in adult women (aged 16 years and above) with a GP-recorded DA exposure, compared to women with no recorded exposure.

Methods

Design: Retrospective open cohort study (1st January 1995 to 31st January 2022) **Data Source:** IQVIA Medical Research Database (IMRD) UK database **Exposed:** Women with a Read code for exposure to DA. Each exposed patient was matched to four unexposed controls, by GP, age (+/- 1 year) and Townsend deprivation quintile.

Unexposed: Women with no GP-coded exposure to DA. **Outcome:** Read code corresponding to breast cancer diagnosis **Analyses:** Cox regression analysis was used to calculate adjusted hazard ratios (aHR) **Covariates:** age, Townsend deprivation quintile, BMI, smoking status, and drinking status at study entry **Sensitivity Analyses:** 1) incident-only cases; 2) age treated as a categorical variable to account for non-linear variance in oestrogen levels.

ed hazard ratio: adjusted for age as a continuous variable, Townsend ation quintile, BMI, smoking status, and drinking status at study entry

3: Adjusted HRs for risk of breast cancer diagnosis in with DA exposure by categorical age group

Age Group	Hazard Ratio (95% CI)	p-value
16-25	Ref group	_
>25-40	10.98 (4.48 –	<0.05
	26.92)	
>41-50	32.99 (13.51 –	<0.05

< 0.05

0.317 80.55) p-value 42.23 (17.23 -≥ 51 *Adjusted hazard ratio: adjusted for age as a continuous variable, Townsend deprivation quintile, BMI, smoking status, and drinking status 103.47) at study entry **Adjusted hazard ratio: adjusted for age groups, Townsend deprivation quintile, BMI, smoking status and drinking status at study entry

Findings

- No significant association between DA exposure and breast cancer diagnosis in a UK primary care cohort, which was robust to a sensitivity analysis of incident only cases (where DA exposure occurred during the study period) and a second sensitivity analysis where age was treated as a categorical variable to mirror the variations in oestrogen levels across the reproductive lifespan.
- The second sensitivity analysis found that older age conferred a greater risk of breast cancer diagnosis in those with DA exposure, reflecting age-specific incidence trends in the UK.

Conclusion

Findings:

Our analysis found no significant between DA exposure and breast cancer diagnosing in a UK primary care cohort of adult women. This finding was robust to a sensitivity analysis of incident only cases. The second sensitivity analysis found that older age was associated with a greater risk of breast cancer diagnosis, reflecting the age-specific incidence trends in the population.

Limitations:

- Coding in electronic health records can be inaccurate, leading to undetected cases of abuse in the unexposed group, potentially underestimating effect size
- Coding is unable to account for severity of abuse, so there is a possibility that recorded cases of abuse are those that are more severe
- Despite matching for deprivation, we cannot comment on vulnerable populations that can struggle to access primary care (e.g., travellers and migrants)

Strengths:

Large UK primary care database.

Future Research:

Further research is necessary to explore wider health outcomes amongst those with DA exposure and further research is needed to explore cancer outcomes specifically in survivors of abuse.

References

- Public Health England. Cancer registration statistics, England.
- Fuller-Thomson E, Brennenstuhl S. Making a link between childhood physical abuse and cancer. Cancer. 2009;115(14):3341-3350.
- Coker AL, Sanderson M, Fadden MK, Pirisi L. Intimate Partner Violence and Cervical Neoplasia.