

25-29 September 2022 hybrid in Cape Town, South Africa

Wamkelekile! Welkom!

SOUTH AFRICA | 2022

Welcome note Open Science Conference 2022 organisation In Memoriam: Mike Harvey and James Lovelock Sponsors Programme overview	3 4 5 6 8
General information Venue information Login details Directions and transport Social events & Food Various useful information	10 11 12 14 17
Programme Friday until Sunday Clce2Clouds Workshop Programm Friday and Saturday, 23-24 Sep Early career scientist day (ECSD) Programme Sunday, 25 Sept	19 20
Programme of Monday - 26 Sep Daily overview Monday Abstracts of the plenary sessions – Theme 1 Abstracts of the plenary sessions – Theme 3 Abstracts of the discussion sessions Poster titles <i>on-site</i> Programme of Tuesday - 27 Sep Daily overview Tuesday	21 22 25 26 29 33
Abstracts of the plenary sessions – Theme 2 Abstracts of the plenary sessions – Integrated topic: Polar Oceans Abstracts of the discussion sessions Poster titles online Programme of Wednesday - 28 Sen	34 37 40 41
Daily overview Wednesday Abstracts of the plenary sessions – Theme 4 Abstracts of the plenary sessions – Integrated topic: Indian Ocean Abstracts of the plenary sessions – Integrated topic: Upwelling Abstracts of the discussion sessions Programme of Thursday – 29 Sen	45 46 49 51 53
Daily overview Thursday Abstracts of the plenary sessions - Theme 5 Abstracts of the plenary sessions – Integrated topic: Climate Intervention Abstracts of the plenary sessions – Integrated topic: Science and Society	55 56 59 61

Welcome to Cape Town for the 2022 SOLAS Open Science Conference!

We have an exciting and interesting programme lined up for our 8th installment of the SOLAS Open Science Conference, a hybrid event in Cape Town, South Africa. During the coming week, you have the opportunity to explore the full range of SOLAS sciences, from the core themes of the science plan during plenary lectures, to emerging issues in discussion sessions, to the future wave during the Early Career Scientists' Day. You will learn and exchange about cutting edge research in the field, present your own findings, and connect with colleagues from all over the world.

SOLAS is a bottom-up organisation, in which the scientific community sets the agenda, and since 2000, the SOLAS Open Science Conferences play a key role in that process.

Cape Town is the ideal coastal city to host the SOLAS OSC this week. South Africa's "Mother City" is surrounded by the Atlantic and Indian Oceans, which strongly influence the local climate, and is also a gateway city to the Southern Ocean and Antarctica. The Benguela upwelling system on South Africa's west coast is one of the world's most productive ecosystems, supporting a diversity of socioeconomically important fisheries, and is the focus of active cross-cutting SOLAS research. To the east is the Agulhas Current, the strongest western boundary current on Earth, that transports heat and salt from the Indian to the Atlantic Ocean, thus playing a critical role in global ocean circulation. South Africa also has a strong geographic advantage for conducting research in the Southern Ocean, as many SOLAS scientists will know from time spent in Cape Town harbor before and after sampling expeditions. SOLAS scientists have explored the approximately 4000 km of open and ice-covered ocean that separate Cape Town from Antarctica in the context of all the SOLAS science themes. Additionally, the Cape Point Global Atmosphere Watch station, located 60 km south of Cape Town, hosts a variety of research platforms developed to investigate the marine atmosphere.

We want to thank all the sponsors and funders of this conference, as well as the sponsors of the international SOLAS programme (SCOR, Future Earth, iCACGP, and WCRP) for all their support over the years. We also thank the SOLAS International Project Office and the Local Organising Committee for their hard work and dedication in assuring that we have a fun and comfortable meeting this week, both for people on-site and remote. Finally, we thank you, the SOLAS community, for making SOLAS the productive, exciting, and important organisation that it is.

Enjoy!

Cécile Guieu Co-Chair, SOLAS Scientific Steering Committee

Minhan Dai Co-Chair, SOLAS Scientific Steering Committee

Katye Altieri Chair, SOLAS 2022 Local Organizing Committee

Scientific Organising Committee

Minhan Dai (SSC Co-Chair, China) Cécile Guieu (SSC Co-Chair, France) Katye Altieri (LOC chair, South Africa) Thomas Bell (UK) Marcela Cornejo D'Ottone (Chile) Erik van Doorn (Germany) Santiago Gassó (USA) Maria Kanakidou (Greece) Arne Körtzinger (Germany) Mohd Talib Latif (Malaysia) Andrew Lenton (Australia) Anoop Mahajan (India) Jun Nishioka (Japan) Jurgita Ovadnevaite (Ireland) Anna Rutgersson (Sweden) Arvind Singh (India) Guiling Zhang (China)

Local Organising Committee at University of Cape Town

Katye Altieri (South Africa) Inge Deschepper (Canada) Susanne Fietz (South Africa) Brett Kuyper (South Africa)

Early Career Scientist Day Committee

Inge Deschepper (Canada) Raquel Flynn (South Africa) Moagabo Ragoasha (South Africa) Asmita Singh (South Africa) Sive Xokashe (South Africa)

SOLAS International Project Office

Chengcheng Gao (China) Jessica Gier (Ireland) Li Li (China) Esther Rickert (Germany)

In memory of Mike Harvey

Mike Harvey (NIWA, New Zealand) has died recently after a short illness. Mikes early research in meteorology and atmospheric monitoring led him to marine aerosols in which he carried out a number of studies, both land and sea based. Mike played a coordinating role in SOLAS campaigns, including the SAGE iron release experiment, the SOAP (Southern Ocean Aerosol Production) study and the recent Sea2Cloud voyage. In addition, he had considerable input to SOLAS through his role as New Zealand representative, and he also attended many of the OSCs. Mike was never happier than when dealing with the technical challenges of making measurements in the field quite literally, as his research also extended to ruminant emissions. He will be sadly missed, not just for his research but also for his good nature and the support he always gave to colleagues, students and friends.

Picture credit: Cliff Law

Dr. Cliff Law

National Institute of Water & Atmospheric Research Ltd (NIWA) Wellington, New Zealand

In memory of James Lovelock

Jim Lovelock died this summer, on the day he turned 103. A world-class scientist, inventor (he developed, among many other things, the electron capture detector), thinker, writer, experimental and theoretical researcher, he built bridges across disciplines. He has had a huge influence on many of us in the SOLAS community, both pioneering research on trace gases emitted by the oceans (sulfur, halocarbons), providing a holistic view (Earth functioning and evolution) as context for ocean-atmosphere interactions, and sparking research into the role of marine aerosols in climate regulation. His research, results and concepts are more fundamental to climate and Earth System sciences than is often recognized. His long life has been driven by curiosity, passion for nature, a sense of humor and, above all, independence. Referent, inspiring, controversial, groundbreaking, Jim Lovelock leaves an enormous legacy for which we are forever grateful.

Picture credit: M. Steinke

Dr. Rafel Simó Institut de Ciències del Mar (CSIC) Barcelona, Spain

We thank all our sponsors for their valuable contributions!

CAPE TOUN & Western Cape convention bureau by Wesgro Wesgro

wesgro.co.za/convention-bureau/home

futurerth Research, Innovation, Sustainability,

Future Earth, Research. Innovation. Sustainability <u>futureearth.org</u>

Elementa Science of the Anthropocene <u>elementascience.org</u>

International Union of Geodesy & Geophysics (IUGG) iugg.org/

Ocean-Land-Atmosphere Research

A SCIENCE PARTNER JOURNAL Ocean-Land-Atmosphere Research, a Science Partner Journal (OLAR)

spj.sciencemag.org/journals/olar/

North Pacific Marine Science Organization (PICES) meetings.pices.int/

Scientific Committee on Oceanic Research <u>scor-int.org</u>

University of Cape Town <u>uct.ac.za/</u>

SOLAS Funders and Sponsors

Ollscoil na Gaillimhe University of Galway

Research. Innovation. Sustainability.

近海海洋环境科学国家重点实验室(厦门大学)

State Key Laboratory of Marine Environmental Science (Xiamen University)

General

- all sponsors are listed in alphabetical order -

Open Science for Public Good

Atmospheric Science

Editor-in-Chief: Detlev Helmig

Ocean Science

Editor-in-Chief: Jody W. Deming

Impact Factor: 4.569 online.ucpress.edu/elementa

Time	Monday, 26 Sep	Time	Tuesday, 27 Sep
08:30	Conference opening Welcome / SOLAS introduction K. Altieri / C. Guieu and M. Dai	08:30	Theme 2: Air-sea interface and fluxes of mass and energy
8:40	Theme 1: Greenhouse gases and the oceans Introduction by session chairs: M. Cornejo and G. Zhang		Introduction by sessions chairs: T. Bell and A. Rutgersson
08:50	P. Mongwe (South Africa) : The impact of anthropogenic forcing on the Southern Ocean CO ₂ sink - <i>on-site</i>	08:40	M. Cronin (USA): Large-scale Patterns of warm layer vs. cool skin corrections to bulk sea surface temperature and Reflections on the Observing Air-Sea Interactions Strategy (OASIS) - on-site
09:20	M. Ahmed (Canada): Undersaturation of oxygen in the subsurface waters of the Northwest Pacific during the wintertime convections from Argo-O ₂ data - <i>online</i>	09:10	S. Nicholson (South Africa): Interrogating thermal biases in air-sea CO2 fluxes through top-down and bottom-up observational constraints - <i>on-site</i>
09:40	S. Akande (Nigeria): Modelling the Spatio-Temporal Variations of CO ₂ and their Impacts on the Surface Oceans - online	09:30	P. Rickard (UK): Surface microlayer surfactant variability and air-water gas exchange - on-site
10:00	J. Hauck (Germany): Constraining regional and global ocean carbon fluxes in RECCAP2 - <i>online</i>	9:50	O. Wurl (Germany): HALOBATES: An autonomous research catamaran for high-resolution measurements of the sea-surface microlaver - <i>online</i>
		10:10	Group picture / photo montage
10:20	Coffee and tea break	10:20	Coffee and tea break
10:50	Theme 3: Atmospheric deposition and ocean biogeochemistry Introduction by session chairs: S. Gassó and J. Nishioka	10:50	Polar Oceans Introduction by session chair: K. Altieri
11:00	M. Kurisu (Japan): Application of Fe isotope ratios for a better understanding of the Fe cycle in the surface ocean and lower atmosphere - <i>online</i>	11:00	O. Crabeck (Belgium): Sea ice biogeochemistry and polar oceans: Important fact and challenge - on-site
11:30	A. Milinković (Croatia): Variabilities of biochemical properties of the sea surface microlayer: insights to the atmospheric deposition impacts - <i>online</i>	11:30	H. Hayashida (Japan): Bi-polar perspectives on projected changes in sea-ice algae blooms from a global sea ice-ocean coupled model - <i>online</i>
11:50	A. Ito (Japan): Aerosol bioaccessible iron supply from southern Africa to the Southern Ocean - <i>on-site</i>	11:50	N. Steiner (Canada): Coupling of ocean-ice-atmosphere processes: from sea-Ice biogeochemistry to aerosols and Clouds (Clce2Clouds) - on-site
12:10	D. Hamilton (USA): Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry - <i>on-site</i>	12:10	R. Lampere (France): Polar sea-salt aerosols in CMIP6 models - online
12:30	Lunch	12:30	Lunch
13:30	Discussion sessions UN Decade of Ocean Science Proposal: Aerosol Exchange with Marine Ecosystems - Douglas Hamilton, USA; Cecile Guieu, Erance: Morgane Perron France	13:30	Discussion sessions Strengthening Partnerships between OASIS and the Global South - Christa Marandino, Germany; Meghan Cronin, USA; Warren Joubert, South Africa: Seb Swart, Sweden
14.50	Coffee and tea break	14.50	Coffee and tea break
15:00	SOLAS Science & Society: building upon past achievements	14.50	Differences and commonalities in air-ice-ocean processes in
15.00	& future possibilities - Erik van Doorn & Christa Marandino, Germany		the Antarctic and Arctic - Nadja Steiner, Canada; Jessie Creamean, USA; Jennie Thomas, France; Lisa Miller, Canada
16:20	Coffee and tea break (during poster session)		Coffee and tea break (during poster session)
16:20 - 19:00	Poster session on-site on rooftop	16:20 - 19:00	Poster session online in gather.town
19:30	Representatives & Impl. team dinner (invitation only)		

Tim <u>e</u>	Wednesday, 28 Sep	Tim <u>e</u>	Thursday, 29 Sep
08:30	Theme 4: Interconnections between marine	08:30	Theme 5: Ocean biogeochemical control on atmospheric
	ecosystems, aerosols, and clouds		chemistry
	Introduction by session chairs:		Introduction by session chairs:
	M. Kanakidou and J. Ovadnevaite		M. Kanakidou and T. Latif
08:40	B. Wang (China): Micro-spectroscopic characterization	08:40	M. Gali Tapias (Spain): From weather to climate scales in ocean
	and ice formation potential of marine related aerosol		biogeochemistry-atmospheric chemistry studies: mind the gaps
	particles on the		
09:10	K. Fossum (Ireland): Marine aerosol-cloud interactions	09:10	M. Peltola (Finland): Marine aerosol formation and its chemical
	and investigations into typical degrees of air pollution		precursor species in coastal New Zealand - on-site
09:30	M. Mallet, (Australia): Contrasting aerosol, cloud,	09:30	S. Pongpiachan (Thailand): Applying synchrotron radiation-
	precipitation, and radiation interactions at low and		based attenuated total reflection-fourier transform infrared to
	high Southern Ocean latitudes - online		evaluate the effects of shipping emissions on fluctuations of
09:50	K. Sellegri (France): Sea2Cloud: from biogenic emission	09:50	L. Zhou (Germany): Winter season Southern Ocean
	fluxes to cloud properties in the South West Pacific -		distributions of climate-relevant trace gases - on-site
10.10	on-site	10.10	Coffee and tee breek
10:10	Lorree and tea break	10:10	Climate Intervention / Science and Society
10.40	Introduction by session chairs:	10.40	Introduction by session chairs:
	A. Mahajan and A. Singh / M. Cornejo and A.		E. van Doorn and A. Lenton
11.00	Körtzinger	11.00	N Manaia (Commune) Contrar District Destanted as a surger
11:00	2. Lachkar (UAE) : Air-sea interaction and physical- biogeochemical coupling in the Indian Ocean:	11:00	N. Mengis (Germany): Carbon Dioxide Removal measures - Feasibility, uncertainties, and their contribution to net-zero -
	examples of recent advances and gaps in		online
	understanding - on-site		
11:30	P. Panda (India) : Atmospheric Dry deposition of Mineral Dust and associated nutrient supply and their	11:30	P. Monteiro (South Africa) : Building a national integrated observational and modelling canability to support the
	solubility over the Indian Ocean during Vernal Summer		assessment of ocean CDR in South Africa for robust policy
	months - online		development - on-site
11:50	M. Ragoasha (South Africa): Eastern Boundary	11:50	E. Mahu (Ghana): Putting Science to Action - online
	trends - on-site		
12:10	R. Oliveira (Brazil) : The tropical and subtropical South	12:10	H. Liu (China): Global shipping emission inventories with high
	Atlantic Ocean biogeochemistry responses for the IPCC		spatial and temporal resolution - online
	AR5 future scenarios using EcoGEnIE 1.0 - on-site		
12:30	Lunch	12:30	J. Dinasquet (USA): Sea-air transfer and dispersal of harmful
12.20	Discussion	12.50	sea spray aerosols - on-site
13:30	Discussion sessions	12:50	Conference closing
	Canada; Neil Harris, UK; Erik van Doorn, Germanv		
14:50	Coffee and tea break		
15:00	SOLAS science and global ship emissions – common challenges and next steps - Christa Margadine		
	Germany; Tom Bell, UK; Anna Rutgersson, Sweden;		
	Zongbo Shi, UK		
16:20	Cottee and tea break		
16:30 - 17:50	Open Science and Publishing- Community Needs and Challenges - Jamie Males & Emma Archer, PLOS		rollow us on twitter
17.50	Climate, UK		@SOLAS_IPO
18:00 -			
19:00	Virtual networking event on gather.town		
19:30	Conference banquet		Q
			J

Welcome to the new University of Cape Town (Graduate School of Business (UTC GSB) Academic Conference Centre!

UTC GSB Academic **Conference Centre**

9 Portswood Rd, Victoria & Alfred Waterfront, Cape Town

Registration desk This service will be situated in the foyer of the conference centre. Please collect your conference material when you arrive at the conference centre. If you require any assistance, please visit the registration desk.

Login details - join the virtual events!

All conference participants are invited to join the virtual events!

Plenary sessions and discussion sessions 26-29 Sep will be held on Zoom.

Online poster session 27 Sep at 4.20 pm will be held via the online platform gather.town.

Wirtual networking event 28 Sep at 4.30 pm will be held in gather.town.

How to join the online events?

The login details to join the virtual parts conference such the online presentations, the discussion sessions, the poster session as well as the virtual networking event have been sent by e-mail to you.

If you have not received the login details via email, please contact the registration desk on-site or send an e-mail to us, if you are attending the conference online.

We look forward to meeting you virtually! See you soon on Zoom and in gather.town!

Cape Town International Airport

Cape Town International Airport (CPT) is the international airport in Cape Town, South Africa. It serves as a hub for South African Airways and is the tourist gateway to South Africa. It is the second largest airport in South Africa and is located 22 kilometers east of Cape Town's city center, foreshore and V&A Waterfront where most of the tourist accommodation, activity hubs, and business bubbles are located. For more information: www.capetown-airport.com

Airport Transfer

Taxis, avoid unlicensed taxis and taxi minibuses (typically Toyota Quantums 12 seaters) that operate without official routes, stops and timetable. They are not safe for tourist and most locals! We recommend to use the MyCiTi bus system and Uber, or ask your hotel to call you a taxi. For your own safety, please do not just hail a cab.

🐞 MyCiti bus system

MyCiti bus goes from/to Cape Town airport/V&A Waterfront in approx. 20 min drive and costs approx. R64, 3.60 €. MyCiti bus station in Cape Town Airport is located in the Transport Plaza (opposite the Central Terminal building). Info on this transport can be found on the MyCiti website see here: www.myciti.org.za/en/routes-stops/airport-services/

How to take the MyCiti bus: You need a myconnect card loaded with money from MyCiti Stations and participating retailers to travel with MyCiti busses. There are MyCiti bus stops at the airport and the Waterfront where you can buy and load a card.

Visit these websites to read about MyCiti bus: www.myciti.org.za/en/discover-myciti/the-a-z-of-using-myciti/

Ulysses Tours

Ulysses Tours offers door-to-door airport transfers to/from the Cape Town airport. You will be picked up with a name board. Book here:

Uber

Uber drivers are also providing airport transport. Airport transport to/from the V&A Waterfront costs approx. 10 €.

Further transport information

Getting Around - All your options for Cape Town locomotion http://capetownblog.org/getting-around-cape-town/

tours & transfers

Direction and Transport

Catch a MyCiTi bus between the MyCiTi Airport bus station right outside the main Airport terminal, and the city centre, and transfer seamlessly to another MyCiTi route to reach your destination. Take a bus A01 from the airport to Civic Centre (depart every 20 min), change bus at Civic Centre and take a bus line to the Waterfront such as: 104, T01, T01X. If you take the yellow line 104, get off at Aquarium or Nobel Square, these stations are close to the conference center.

MyCiti Airport Service Guide

Download the MyCiti Airport Service guide with the route map and detailed instructions on how to load the MyConnect card and other useful information as a handy PDF document.

Your convenient, cost-effective gateway to Cape Town

Valid from July 2022

SOUTH AFRICA | 2022

Welcome reception

Join the Open Science Conference 2022 Welcome Reception at the rooftop terrace of the UCT GSB Conference Centre. Meet the other conference attendees and enjoy the breath-taking nighttime scenery from the rooftop terrace.

Finger-food (also vegetarian) and beverages will be served and are included in the conference fee. A 4 Piece Jazz Band will entertain us.

All conference participants are invited to the event!

Welcome reception

Sunday, 25 Sep, 6 pm. Roof terrace, University of Cape Town, Graduate School of Business Conference Centre

Conference dinner

Pigalle Restaurant - 57A Somerset Rd, Green Point, Cape Town, 8051

By bus take MyCiti bus lines 108, 109 and T02X from UCT Graduate School of Business conference centre to the restaurant Pigalle. How the MyCiti bus system works is explained on page 11.

Restaurants in Cape Town at the V&A Waterfront

The V&A Waterfront is a 123-hectare mixed-use development, offering everything from residential to commercial property, hotels, retail districts, extensive dining, leisure and entertainment facilities. You find over 80 restaurants and eateries from which to choose in the V&A Waterfront. We created a list of recommended restaurants and café's for you, see below.

👹 Best Seafood

Baía <u>baiarestaurant.co.za/</u> - fine cuisine with harbour and ocean views. Upstairs @ Quay Four <u>quay4.co.za/</u> - nice views! Willoughby & Co <u>willoughbyandco.co.za/</u> - Japanese culinary experience.

Coffee shops & Light meals

Tashas Café - <u>tashascafe.com/</u> Starbucks - <u>starbucks.co.za/</u> COOKED V&A Waterfront inside Watershed - <u>thecookedcook.co.za</u>

👹 Casual Dining

Gibson's Gourmet Burgers <u>gibsonsburgers.co.za/</u> - gourmet burgers and ribs. City Grill <u>citygrill.co.za/gallery/</u> - showcasing South African Traditional food. Kapstadt Brauhaus <u>kapstadtbrauhaus.co.za/</u> - traditional German cuisine. Karibu eatery <u>kariburestaurant.co.za/food/food-menu/</u> - nice place with good food and very South African menus. The Yard <u>theyardatsilo.co.za/food/</u> - cool place on the other side of the Warfront known as the silo district.

Si cantina sociale <u>sicantinasociale.co.za/menu/</u> - very nice high end tapas bar.

🐞 Halal Friendly

Colcacchio colcacchio.co.za/ - artisanal wood-fired pizzas, pastas and gourmet salads.

Various useful information

- M ATM All major South African banks and foreign currency converters can be found in the main V&A Waterfront mall, the V&A Watershed, as well as at the aquarium.
- Kafé There are many nice café's at the waterfront mall as well as work space benches in the upper floor of the Waterfront mall during the week for those who prefer to work surrounded by people.

👹 Covid-19 SOLAS recommends that all attendees wear a mask and follow hygiene measures. Covid-19 rapid test will be available at the registration desk. Covid-19 testing centre at the V&A Waterfront: Battery Park @ V&A Waterfront, 19 Dock Rd.

What to do when tested positive while staying in Cape Town, visit this website with useful information: www.capetown.travel/i-tested-positive-forcovid-19-while-on-holiday-in-cape-town-now-what/

👹 Homelessness situation in Cape Town is currently probably at its worst and there is no way not to notice the large number of homeless people and tents all around town. If you want to help you can buy night shelter or meals via different apps. Homeless shelters in Cape Town:

Haven Night Shelters, buy a bed for someone here: haven.org.za/

U-turn, buy meals, showers, clothing or a bed for a night vouchers that you can then give to people instead of cash. homeless.org.za/vouchers/

Ladles of love donate money for the meal program. ladlesoflove.org.za/

WW Phone/Internet Get a virtual/digital sim card which enables your phone to work in the region traveling without roaming fees. Providers are e.g. Worldsim. www.airtel.in/blog/prepaid/what-is-virtual-sim-card-and-how-to-get-it/

Buy Vouchers

Vouchers provide meals and clothing, as well as support and rehabilitation. By removing cash, they reduce drug use too.

SOUTH AFRICA | 2022

Various useful information

- Sightseeing with the hop on hop off sightseeing red bus. Not expensive and offers a good value if you use them for a full day. The nearest station is right in front of the Aquarium, down the stairs from the conference. More here: www.citysightseeing.co.za/
- **Souvenirs** At the Waterfront, 17 Dock Rd are many local craft and souvenir shops like: Wild Thing Africa, Siyakatala, Sunshine Crafts or V&A Waterfront Watershed and many more.
- Tipping is common in the range of 10-15% in a restaurant or any other larger service and many service providers rely on tipping. Also, petrol attendants and in smaller towns also tip official parking guards. Most people tip between R5 and R20, so, if you plan a road trip, keep some small change available.
- Language guide How to say the following sentences in Xhosa // Afrikaans: Good day - Molweni // Goeie dag How are you? - Ninjani? // Hoe gaan dit met jou? Thank you - Enkosi // // Dankie Have a good day - Nibenemi emnandi // Lekker dag vêrder
- Kor further information, please visit the SOLAS conference website as well as the official Cape Town tourism website: https://uctcmc.eventsair.com/solas-osc2022/general-information

https://www.capetown.travel/travel-wise/

TRAVE

This two-day workshop is hold by the Scientific Committee on Oceanic Research (SCOR) working group #163 Coupling of ocean-ice-atmosphere processes: from sea-Ice biogeochemistry to aerosols and Clouds (CIce2Clouds). Invitation only!

CIce2Clouds Workshop Programme - Friday, 23 Sep 2022	
08:00	Registration
08:30	Welcome and Introduction
09:30	Tutorial Talks: Atmospheric processes
10:30	Discussion: Atmospheric processes
11:00	Coffee / tea break
11:15	Tutorial Talks: Ocean & sea ice processes
12:15	Discussion: Ocean & sea ice processes
12:45	Lunch
13:45	Tutorial Talks: Exchange processes
14:45	Discussion: Exchange processes
15:15	Coffee / tea break
15:30	Keynote: C. Haas (AWI): Contrasting Arctic & Antarctic Sea-Ice
16:30	Discussion: Connection to Clce2Clouds
17:00	End first day

Clce2Clouds Workshop Programme - Saturday, 24 Sep 2022

08:00	Registration
08:30	Discussion: Processes from Day 1; Paper outlining & plans for compiling; Identify leads
10:30	Coffee / tea break
10:45	Clce2Clouds Sub-working Group Discussion: Building on keynote talk discussion and integration into ongoing synthesis papers
12:45	Lunch
13:45	Clce2Clouds Terms of Reference: Discussion and Next Steps
15:45	Coffee / tea break
16:00	Other business: Plans for next meeting; ECR field school; SOLAS discussion session
17:00	End of the Clce2Cloud workshop

Early Career Scientist Day (ECSD)

Sunday

The SOLAS Early Career Scientist Day (ECSD) is an international, hybrid event that brings together around 30 in person and more online early career scientists and world-leading international scientists for a day of skill development and awareness workshops. In addition, we will do a tour to the Cape Point Nature reserve where we will have a tour of the Meteorological station and the area with stops along the way at either Boulders beach to see the African penguins* or at Chapmans Peak. *Please note: The schedule is very tight, Boulders beach with the penguins can only be visited if there is enough time left.

ECSD Programme - Sunday, 25 Sep 2022		
08:30	Registration at the conference venue at UCT New Academic Conference Centre, Breakwater Lodge Campus	
09:00	Opening remarks by the ECSD organising committee	
09:10	Workshop 1: Grant and proposal writing: tips and tricks	
10:40	Coffee and tea break	
11:10	Workshop 2: Equity, Diversity and Inclusion within our Scientific field	
12:40	Break and lunch collection	
13:00	Departure from Conference Centre by bus Excursion to the Meteorological Station and to Cape Point	
14:30	Arrival at Cape Point, Cape Peninsula	
15:00 - 17:00	Tour of the Meteorological Station and Cape Point	
17:30	Departure from Cape Point, Cape Peninsula	
19:00	Arrival at UCT for the Welcome Reception	

Cape Point, South Africa.

© Pixabay

Boulders beach with African penguins.

20

Times	Monday, 26 Sep
08:30	Conference opening - Welcome & SOLAS introduction
08:40	Theme 1: Greenhouse gases and the oceans Introduction by session chairs: M. Cornejo and G. Zhang
08:50	P. Mongwe (South Africa) : The impact of anthropogenic forcing on the Southern Ocean CO2 sink - <i>on-site</i>
09:20	M. Ahmed (Canada) : Undersaturation of oxygen in the subsurface waters of the Northwest Pacific during the wintertime convections from Argo-O2 data - <i>online</i>
09:40	S. Akande (Nigeria) : Modelling the Spatio-Temporal Variations of CO2 and their Impacts on the Surface Oceans - <i>online</i>
10:00	J. Hauck (Germany): Constraining regional and global ocean carbon fluxes in RECCAP2 - online
10:20	Coffee and tea break
10:50	Theme 3: Atmospheric deposition and ocean biogeochemistry Introduction by session chairs: S. Gassó and J. Nishioka
11:00	M Kurisu (Japan) : Application of Fe isotope ratios for a better understanding of the Fe cycle in the surface ocean and lower atmosphere - <i>online</i>
11:30	A. Milinković (Croatia): Variabilities of biochemical properties of the sea surface microlayer: insights to the atmospheric deposition impacts - <i>online</i>
11:50	A. Ito (Japan) : Aerosol bioaccessible iron supply from southern Africa to the Southern Ocean - <i>on-site</i>
12:10	D. Hamilton (USA) : Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry - <i>on-site</i>
12:30	Lunch
13:30	Discussion sessions: UN Decade of Ocean Science Proposal: Aerosol Exchange with Marine Ecosystems - Douglas Hamilton, USA; Cecile Guieu, France; Morgane Perron, France
14:50	Coffee and tea break
15:00	SOLAS Science & Society: building upon past achievements & future possibilities - <i>Erik</i> van Doorn & Christa Marandino, Germany
16:20	Coffee and tea break (during poster session)
16:20 -19:00	Poster session
	On-site on roof top
19:30	National representatives & Impl. team dinner (invitation only)

Monday

Plenary session Theme 1: Greenhouse gases and the oceans

Session chairs: M. Cornejo and G. Zhang Keynote speaker: Precious Mongwe

Precious Mongwe is a researcher at the Council for Scientific and Industrial Research (CSIR). He is interested in ocean biogeochemistry, mainly working on the ocean carbon cycle and ocean deoxygenation. Seeking to understand processes that regulate the ocean carbon cycle, the impact of climate change on the ocean CO2 sink and its implications to the biosphere. He recently started working on ocean deoxygenation within the context of marine ecosystems using metabolic theory. He uses ocean circulation models and Earth system models as the main tools to study the earth system.

Affiliation: Ocean and Climate dynamics | Council for Scientific and Industrial Research (CSIR) | Cape Town, South Africa

The dynamic of the nitrous oxide in the Humboldt Current System - on-site

The Southern Ocean takes up over 40% of the ocean's anthropogenic CO2. The business-as-usual climate scenario projects a warmer climate, higher atmospheric CO2 concentrations, and weakened ocean's CO2 buffering capacity in the future. This study investigated how the Southern Ocean CO2 sink will be affected by these conditions as simulated according to the socioeconomic pathway 585 climate scenario. We find that in addition to the increase in CO2 uptake, the largest CO2 sink region shifts from the Subtropical region (northern edge of the Southern Ocean) to the Antarctic region (southern edge) by the end of the century (2080 – 2099). In the future, CO2 uptake is nearly double in the Antarctic region relative to the region between 30oS and north of the polar front; the present climate shows the opposite. Because CO2 uptake is primarily regulated by temperature-driven solubility in the subtropical region, increased CO2 uptake during cooler seasons (winter-autumn) due to higher atmospheric CO2 in the future is nearly compensated by weakened CO2 solubility in warmer seasons (summer-spring) due to warming. Two factors influence the CO2 sink increase in the Antarctic region. First, warming-driven seaice melt enhances surface stratification and shoals ocean mixed layer depths, weakening subsurface DIC entrainment and enhancing seasonal surface cooling (& warming) rates; this strengthens solubility-driven CO2 uptake. Secondly, consistent with previous studies, we find that the lower CO2 buffering capacity strengthens biological-driven CO2 uptake, although long-term changes in primary production are not significant. Collective, these changes shift the Southern Ocean's dominant CO2 sink from the subtropical region to the Antarctic region in the future.

Undersaturation of oxygen in the subsurface waters of the Northwest Pacific during the wintertime convections from Argo-O2 data - *online*

Mohamed Ahmed¹, Roberta Hamme¹

¹School of Earth & Ocean Sciences, University of Victoria, Victoria, Canada

Trends of declining O2 (i.e., ocean deoxygenation) in our ocean are expected to increase in conjunction with the increase in ocean warming and acidification, primarily as a result of anthropogenic carbon emissions. One of these significant trends was observed in the North Pacific Intermediate Water (NPIW). As ventilation sites are rare, processes within them have the potential to control biological activity and biogeochemical processes over broad areas and time scales. However, recent observations and models suggest that dissolved gases in these locations do not come to equilibrium with the atmosphere. In this study, we estimate the O2 content in the newly formed NPIW and quantify the extent of oxygen disequilibria over time and space. Our findings will provide a better understanding of oxygen consumption in the subsurface water and will allow an additional constraint for biogeochemical models and global carbon budgets in the North Pacific.

Modelling the Spatio-Temporal Variations of CO2 and their Impacts on the Surface Oceans - *online*

<u>Samuel Akande</u>¹, Temi Ologunorisa¹, Adekunle Osinowo¹ ¹Federal University Of Technology Akure, Akure, Nigeria

The variability of surface ocean CO2 (SOCAT) data (between 1957 and 2021) were investigated across the North Atlantic Ocean using geo-statistical techniques over a variety of years, sizes, and lengths. As a result, developing and interpreting decadal ocean biogeochemical predictions has the potential to help civilization while also being beneficial to the ocean environment. Hence, geostatistical approaches produce more accurate results for the geographical and temporal variability of surface ocean pCO2 and, by extension, air-sea CO2 fluxes over the North Atlantic Ocean. Findings show that employing machine learning to combine model output with observations improves prediction accuracy somewhat. In addition, we highlight the learnt misfits' potential as a new model diagnostic tool for visualizing spatiotemporal pCO2 estimates. Taken together, this research has major implications for the development of carbon monitoring systems, which will benefit policymaking and improve our understanding of the air-sea CO2 sink's evolution.

Constraining regional and global ocean carbon fluxes in RECCAP2 - online

Judith Hauck¹, Nicolas Gruber², Masao Ishii³ et al.

¹Alfred Wegener Institute, Helmholtz Centre For Polar And Marine Research, Bremerhaven, Germany, ²Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland, ³Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan.

Keeping global warming in line with the Paris Agreement requires rapid reductions in CO2 emissions. Tracking these reductions demands a thorough bookkeeping of natural and anthropogenic carbon fluxes. The second REgional Carbon Cycle Assessment and Processes (RECCAP2) activity of the Global Carbon Project aims to accurately assess land and ocean CO2 sources and sinks through the efforts of hundreds of scientists around the globe.

For the ocean component, regional budgets are developed for the global ocean and five large regions for the period 1980-2018. In addition, four 'special focus' themes, namely the biological carbon pump, the seasonal cycle, the coastal ocean and model evaluation are addressed. We use state-of-the-art ocean models and observation-based datasets to provide robust estimates of regional CO2 budgets and constrain their uncertainties. Here, we will provide an overview of RECCAP2 activities, and showcase key results focusing on mean ocean carbon fluxes, and their trends and variability.

Plenary session Theme 3: Atmospheric deposition and ocean biogeochemistry

Session chairs: S. Gassó and J. Nishioka Keynote speaker: Minako Kurisu

Minako Kurisu got her Ph.D. at the University of Tokyo, Japan in 2020. After working as a postdoctoral researcher at Research Institute for Global Change, JAMSTEC, Japan, she is currently a researcher at Research Institute for Marine Resources Utilization, JAMSTEC. She is interested in the cycles of trace metals in the atmosphere and surface ocean. Her research especially focuses on the atmospheric iron (Fe) deposition, including natural and anthropogenic Fe. She has been applied *Fe stable isotope ratios and X-ray absorption fine structure analysis for Fe source apportionment and characterization of Fe species in the atmosphere.*

Affiliation: Research Institute for Marine Resources Utilization | Japan Agency for Marine-Earth Science and Technology (JAMSTEC) | Yokosuka, Japan

Application of Fe isotope ratios for a better understanding of the Fe cycle in the surface ocean and lower atmosphere - *online*

Atmospheric deposition of nutrients including nitrogen, phosphorous, iron, and other trace elements has a large impact on primary production and carbon uptake in the surface ocean. In addition to natural dust, aerosols derived from human activity and biomass burning have recently been considered to be important nutrient sources. Atmospheric and oceanic models have been improved to estimate global nutrient depositions and their impacts on primary production, but observational and experimental information, such as the relative contribution of each aerosol source, solubility, deposition, chemical composition and alteration, and the role of organic ligands, is still necessary.

In this talk, I will focus on iron and its stable isotope ratios. The development of sampling methods with little contamination and analytical techniques lead to the high-precision isotope measurement of marine aerosols and seawater. It was found that Fe isotope ratios of combustion aerosols are much lower than that of natural aerosols due to different emission processes. Such low Fe isotope signals were also observed in the marine aerosols downwind of urban regions, and sometimes even in the surface ocean in the Pacific. These are applicable to distinguishing Fe sources in the atmosphere and even in the ocean. I will introduce the recent progress in studies related to Fe isotopes and Fe cycles in the surface ocean.

Variabilities of biochemical properties of the sea surface microlayer: insights to the atmospheric deposition impacts - *online*

<u>Andrea Milinković</u>¹, Abra Penezić¹, Ana Cvitešić Kušan¹, Valentina Gluščić², Silva Žužul², Sanda Skejić³, Danijela Šantić³, Ranka Godec², Gordana Pehnec², Dario Omanović¹, Anja Engel⁴, Sanja Frka¹ ¹Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia, ²Institute for Medical Research and Occupational Health, Zagreb, Croatia, ³Institute of Oceanography and Fisheries, Split, Croatia, ⁴GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

During a six-month field campaign within BiREADI CSF IP-2018-01-3105 project, a comprehensive measurements of atmospheric and sea surface samples were obtained at the Adriatic coastal area. A strong impact of local/regional open-fire biomass burning (BB) sources likely supplied a substantial amount of N species to the sea surface microlayer (SML) and promoted the development of autotrophic and heterotrophic organisms, leading to a shift in the biological community toward small cell organisms. Consequently, atmospheric deposition associated with BB emissions played an important role in organic matter enrichment in the SML, which could have strong implications for global biogeochemical processes mediated by SML. This work demonstrates the importance of studying the short-term scale interactions between the atmosphere and ocean compartments, which can lead to a significant improvement in understanding of the ocean-atmosphere system, with important implications for climate change.

Aerosol bioaccessible iron supply from southern Africa to the Southern Ocean - *on-site*

Akinori Ito¹, Takuma Miyakawa¹ ¹JAMSTEC, Yokohama, Japan

Atmospheric emissions of leachable metals from anthropogenic, lithogenic, and pyrogenic origins represent important external sources of micronutrients to the open ocean. However, significant uncertainties remain in the source fluxes, partly due to a lack of source-specific evaluation of Fe-laden aerosols. In this presentation, we evaluate the aerosol chemical transport model (IMPACT), using ground-based datasets of trace elements. The model generally reproduced the observed data of bioaccessible Fe concentrations in fine particles at Fukue and Tasmania islands. The continuous monitoring data and these constrains on aerosol transport model offer improvements in the source apportionment of aerosol Fe. The improved global model may shed some light on an underestimation of bioaccessible Fe concentrations over the Southern Ocean. Further, the results are discussed in terms of future research needed to predict the effect of bioaccessible Fe aerosols from southern Africa to the Southern Ocean more accurately.

Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry - on-site

Douglas Hamilton¹, Morgane Perron², Tami Bond³, Andrew Bowie², Rebecca Buchholz⁴, Cecile Guieu⁵, Akinori Ito⁶, Willy Maenhaut⁷, Stelios Myriokefalitakis⁸, Nazlı Olgun⁹, Sagar Rathod³, Kerstin Schepanski¹⁰, Alessandro Tagliabue¹¹, Robert Wagner¹², Natalie Mahowald¹

¹Cornell University, , USA, ²Institute for Marine and Antarctic Studies, University of Tasmania, Australia, ³Colorado State University, , USA, ⁴Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, USA, ⁵Laboratoire d'Océanographie de Villefranche, Sorbonne Université, France, ⁶Japan Agency for Marine-Earth Science and Technology, , Japan, ⁷Ghent University, , Germany, ⁸National Observatory of Athens, , Greece, ⁹Istanbul Technical University, , Turkey, ¹⁰Freie Universität Berlin, , Berlin, ¹¹University of Liverpool, , UK, ¹²Leibniz Institute for Tropospheric Research, , Germany

Atmospheric deposition supplies vital nutrients to the phytoplankton that form the base of marine food webs. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This presentation summarizes a recent review (with the same title) which brought together a diverse team of observationalists and modellers to evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and their oceanic impacts. To explore the emerging role of wildfires in biogeochemical cycles, a case study of recent 2019-2020 megafire activity in Australia was undertaken and the interactions of fires and dust aerosol investigated.

UN Decade of Ocean Science Proposal: Aerosol Exchange with Marine Ecosystems

Co-conveners: Douglas Hamilton, USA; Cécile Guieu, France; Morgane Perron, France

Research priorities of SOLAS and other related programs (GEOTRACES, IMBER) and WGs (GESAMP WG38, 'RUSTED currently under review with SCOR') are at the heart of UN Decade of Ocean Science for Sustainable Development challenges #1, #5, #7, and #10, and ultimately #8. To help achieve these shared goals and contribute to the UN Ocean Decade, SOLAS aims to submit a proposal to the next relevant endorsement call.

To maximise the impact of a successful endorsement for the community this session will open discussion aimed at defining the most insightful project, its scope, and key partners. Science topics for inclusion are open for suggestion. One possible theme is fire emissions as a source of nutrients to different ocean basins. As fires are expected to increase in magnitude and frequency in different regions of the world, the impacts on ocean ecosystems and societies (economy and health) which depend on it require attention.

SOLAS Science & Society: building upon past achievements & future possibilities

Co-conveners: Erik van Doorn & Christa Marandino, Germany

Since the Open Science Conference in Kiel, SOLAS Science & Society has worked on how to increase interaction between natural scientists and social scientists on the one hand and the interaction with society as a whole – especially stakeholders – on the other. In this session, we would like to engage the broader SOLAS community in this work. We will introduce the achievements so far, mainly about three main topics: valuing carbon in the ocean, air-sea interaction and policy, and ship emissions. Moreover, we want to discuss if and how we could build upon these achievements by addressing different opportunities for co-operation. We would also like to start working on new topics such as harmful algae blooms and the effects of marine plastics at the ocean-atmosphere interface. There is evidently also the opportunity to elaborate on other topics that might need to be covered by SOLAS Science & Society in the future.

Poster session on-site

Monday 26 Sep, 4.20-7 pm, on-site at the rooftop

Poster sessions during the conference will be held on-site and online via the platform *gather.town*. On-site poster presenters, please come to the registration desk asap and pick up your individual poster board number and put up your poster. <u>ALL poster presenters</u> (on-site and online), are required to upload and present their posters in gather.town. Note that all posters will be visible on gather.town during the whole day of the virtual poster session. For login information see page 11.

Author	Title	No.	
Theme 1: Greenhou	Theme 1: Greenhouse gases and the oceans		
Laique Merlin Djeutchouang	A semi-idealized model sampling and reconstruction approach across a Southern Ocean front: the sensitivity of pCO2 reconstructions to sampling scales	101	
Martin Hellmich	Ocean-air trace gas fluxes derived from open-path FTIR atmospheric concentration gradient measurements	102	
Alexander Soloviev	Air-Sea Exchange of Greenhouse Gases Under Tropical Cyclones	103	
Frauke Bunsen	The impact of recent climate change on the ocean carbon sink	104	
Tanvi Nagwekar	Effects of Ocean Alkalinity Enhancement by olivine dissolution on the 21st century CO2 uptake by the oceans under different emission scenarios	105	
Mercedes de la Paz Arandiga	The unaccounted oceanic sink of anthropogenic N2O	106	
Theme 2: Air-sea int	terface and fluxes of mass and energy		
Paul Zieger	Bioaerosol Emissions from Baltic Sea Water	201	
Faith February	Sea spray aerosol size distributions at the air-sea interface in False Bay, South Africa	202	
Tesha Toolsee	How do intra-seasonal variability modes dominate the annual cycle of $\Delta pCO2$ and FCO2 in the Southern Ocean?	203	
Thomas Bell	Can radar backscatter be used to estimate CO ₂ gas transfer velocities and fluxes from space?	204	
Laura Braby	Surface mooring observations in the Agulhas Return Current indicate a large ocean temperature bias in Numerical Weather Prediction models	206	
OASIS	Observing Air-Sea Interaction Strategy (OASIS)	217	

Monday

Poster session on-site Monday 26 Sep, 4.20-7 pm, on-site at the rooftop

Author	Title	No.
Theme 3: Atmosphe	eric deposition and ocean biogeochemistry	
Joan Llort	A mesocosm study to characterise the impact of wildfires ash deposition on oligotrophic waters	301
Tanya Marshall	The Angola Gyre is a hotspot of N2 fixation in the South Atlantic Ocean	302
Cécile Guieu	Process studies at the air-sea interface after dust deposition in the Mediterranean sea : results from the PEACETIME project and cruise	303
Marie Boye	Responses of phytoplankton to Patagonian dust input and anthropogenic changes in the future Southern Ocean	304
Susanne Fietz	Atmospheric trace metal over the oceans south off Southern Africa	305
Morgane Perron	RUSTED : Reducing Uncertainty in Soluble aerosol Trace Element Deposition	306
Rémi Losno	Compositional Data Analysis (CoDa), an advanced tool for atmospheric deposition investigations. Examples in Southern Ocean and Caribbean regions.	307
Theme 4: Interconn	ections between marine ecosystems, aerosols, and clouds	
Jessie Creamean	Annual cycle observations of aerosols capable of ice formation in central Arctic clouds	401
Paul Zieger	Aerosol-cloud Interactions over the Central Arctic Ocean	402
Breanna Vanderplow	Variations in Sea Spray Caused by Surfactants and Potential Consequences for Tropical Cyclone Intensity	403
Theme 5: Ocean bio	ogeochemical control on atmospheric chemistry	
Sive Xokashe	Prediction of aerosol pH in the marine boundary layer of the Southern Ocean using ISORROPIA-II model	501
Charel Wohl	Marine biogenic benzene and toluene emissions impact secondary organic aerosol in the polar regions	502
Jerry Tjiputra	Drivers of air-sea fluxes of bromoform and their impact on atmospheric concentration	503
Mishka Rawatlal	The concentration of size-segregated water-soluble organic nitrogen and carbon aerosols from the Cape Point GAW station	504

Poster session on-site Monday 26 Sep, 4.20-7 pm, on-site at the rooftop

Author	Title	No.
Theme 4: Interconnections between marine ecosystems, aerosols, and clouds		
Jessica Burger	Seasonal inorganic aerosol ion concentrations across the Southern Ocean	505
Rafel Simó	Diel variability of DMSP and DMS concentrations, cycling rates and gene transcripts in the open NW Mediterranean Sea	506
Guillaume Le Gland	Dimethylsulfide sources and sinks disentangled by an artificial bloom experiment and a numerical model	507
Manuela Van Pinxteren	High number concentrations of transparent exopolymer particles (TEP) in ambient aerosol particles and cloud water – A case study at the tropical Atlantic Ocean	508
Shrivardhan Hulswar	Third Revision of the Global Surface Seawater Dimethyl Sulfide Climatology (DMS-Rev3)	509
Integrated topic: Inc	dian Ocean	
Garima Shukla	Distribution and composition of aerosols over the Northern Indian Ocean based on ship-borne measurements and model results	601
Integrated topic: Po	lar oceans and sea ice	
Inge Deschepper	Impacts of various nutrient sources on ecosystems productivity in the seasonally ice-covered Hudson Bay region	602
Isabelle Giddy	Vertical convergence of turbulent and double diffusive heat flux drives warming and erosion of Antarctic Winter Water in summer	603
Jennie Thomas	Regional modeling of bromine activation and ozone depletion in two Arctic spring seasons using the regional model WRF-Chem	604
Asmita Singh	The seasonal photophysiological responses of Atlantic Southern Ocean phytoplankton to iron addition	605
CATCH	Cryosphere and Atmospheric Chemistry (CATCH)	610
BEPSII	Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII)	611

Poster session on-site Monday 26 Sep, 4.20-7 pm, on-site at the rooftop

Author	Title	No.
Integrated topic: Up	owelling systems	
Annette Carlson	Assessing drivers of oxygen dynamics in the southern Benguela upwelling system: an interdisciplinary approach	612
Mashiat Hossain	Quantifying the impacts of marine aerosols on chemistry and climate over the Benguela upwelling zone using a global chemical transport model	613
SOLAS science and s	society	
Rémi Losno	SOLAS – France	615
Additional poster		
OLAR	Ocean-Land-Atmosphere Research (OLAR)	701

Daily overview - Tuesday

Time	Tuesday, 27 Sep
08:30	Theme 2: Air-sea interface and fluxes of mass and energy
	Introduction by sessions chairs: T. Bell and A. Rutgersson
08:40	M. Cronin (USA): Large-scale Patterns of warm layer vs. cool skin corrections to bulk sea surface temperature and Reflections on the Observing Air-Sea Interactions Strategy (OASIS) - <i>on-site</i>
09:10	S. Nicholson (South Africa): Interrogating thermal biases in air-sea CO2 fluxes through top-down and bottom-up observational constraints - <i>on-site</i>
09:30	P. Rickard (UK): Surface microlayer surfactant variability and air-water gas exchange - <i>on-site</i>
09:50	O. Wurl (Germany): HALOBATES: An autonomous research catamaran for high-resolution measurements of the sea-surface microlayer - <i>online</i>
10:10	Group picture / photo montage
10:20	Coffee and tea break
10:50	Polar Oceans Introduction by session chair: K. Altieri
11:00	O. Crabeck (Belgium): Sea ice biogeochemistry and polar oceans: Important fact and challenge - <i>on-site</i>
11:30	H. Hayashida (Japan): Bi-polar perspectives on projected changes in sea-ice algae blooms from a global sea ice-ocean coupled model - <i>online</i>
11:50	N. Steiner (Canada): Coupling of ocean-ice-atmosphere processes: from sea-Ice biogeochemistry to aerosols and Clouds (Clce2Clouds) - <i>on-site</i>
12:10	R. Lapere (France): Polar sea-salt aerosols in CMIP6 models - online
12:30	Lunch
13:30	Discussion sessions: Strengthening Partnerships between OASIS and the Global South - Christa Marandino, Germany; Meghan Cronin, USA; Warren Joubert, South Africa; Seb Swart, Sweden
14:50	Coffee and tea break
15:00	Differences and commonalities in air-ice-ocean processes in the Antarctic and Arctic - Nadja Steiner, Canada; Jessie Creamean, USA; Jennie Thomas, France; Lisa Miller, Canada
16:20	Coffee and tea break (during poster session)
16:20 -19:00	Poster session Online in gather.town

Plenary session Theme 2: Air-sea interface and fluxes of mass and energy

Session chairs: T. Bell and A. Rutgersson Keynote speaker: Meghan Cronin

Meghan Cronin co-leads the Observing Air-Sea Interactions Strategy (OASIS) programme of the UN Decade of Ocean Sciences for Sustainable Development. A Research Oceanographer at NOAA's Pacific Marine Environmental Laboratory, she leads the Ocean Climate Stations group that maintains two OceanSITES moorings in the North Pacific — the Kuroshio Extension Observatory (KEO) and the NOAA surface mooring at Station Papa. Both monitor the air-sea exchanges of heat, moisture, and momentum, and upper and bottom ocean physical conditions.

Partners have sensors on the moorings and nearby to monitor air-sea CO2 fluxes, ocean acidification, wave-induced bubbles, carbon export and other parameters. Meghan is also lead Principal Investigator of a pilot study testing use of Saildrone Uncrewed Surface Vehicles within the Tropical Pacific Observing System.

Affiliation: National Oceanic and Atmospheric Administration (NOAA) | Seattle | USA

Large-scale Patterns of warm layer vs. cool skin corrections to bulk sea surface temperature and Reflections on the Observing Air-Sea Interactions Strategy (OASIS) – on-site

Air-sea exchanges of heat, momentum and gasses (e.g., water vapour, CO2 and O2) depend upon the ocean skin temperature, which is generally cooler, but can occasionally be warmer, than the bulk Sea Surface Temperature (SST) measured by in situ sensors. Differences between the skin, bulk and foundation SSTs will be discussed and evaluated in the fifth generation European Centre for Medium-Range Weather Forecasts (ERA5) atmospheric reanalysis. I then will show how daily-averaged warm layer can be estimated from daily-averaged air-sea fluxes and daily-averaged SST. This then allows use of the satellite-based J-OFURO3 fluxes to explore patterns of the warm layer effect in relation to large scale fronts and atmospheric weather patterns, and their potential impacts on gas fluxes. Stepping back, I will then reflect upon the first year of the "Observing Air-Sea Interactions Strategy (OASIS)" and the next steps for this UN Decade of Ocean Sciences for Sustainable Development programme.

Interrogating thermal biases in air-sea CO2 fluxes through top-down and bottom-up observational constraints - on-site

Pedro Monteiro¹, <u>Sarah Nicholson¹</u>, Brian Ward², Mr Mutshutshu Tsanwani³, Sebastiaan Swart⁴, Marcel du Plessis⁴, Christo Whittle⁵, Jean-Baptiste Sallée⁶

¹Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR, Cape Town, South Africa, ²School of Physics and Ryan Institute, University of Galway, Galway, Ireland, ³Department of Forestry, Fisheries and the Environment, Cape Town, South Africa, ⁴Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, ⁵Earth Obs, CSIR, Cape Town, South Africa, ⁶Sorbonne Université CNRS/IRD/MNHN, LOCEAN, IPSL, Paris, France

Recent work has highlighted a potentially important source of uncertainty in global air-sea flux of CO2 (FCO₂) estimates due to uncorrected errors associated with the small differences between the ocean skin, foundation and bulk temperatures mechanistically linked to heat and momentum fluxes. Understanding the CO₂-heat-momentum flux nexus in the mixed-layer is therefore a key challenge to improving model dynamics and uncertainties in observational flux constraints. We present preliminary results from a pilot experiment BENFLEx-21 designed to investigate the role of momentum and heat fluxes on daily-synoptic scale variability of surface ocean pCO₂ and the resulting calculation of FCO₂. Bottom-up high-resolution (mm-scale) thermal profiles measured by fast-response thermistors on a Slocum are coupled with high-frequency top-down surface observations of pCO₂ via Wave Glider and ocean skin temperature from an ISAR instrument on the RS Algoa ship in pseudo-mooring mode. We propose a mechanistic understanding of the physics behind the calculated FCO₂.

Surface microlayer surfactant variability and air-water gas exchange - on-site

Philippa Rickard¹, Ryan Pereira¹, Robert Upstill-Goddard², Guenther Uher², Erik Sahlée³, Leonie Esters^{3,4}

¹*Heriot-Watt University, Edinburgh, United Kingdom,* ²*Newcastle University, Newcastle upon Tyne, United Kingdom,* ³*Uppsala University, Uppsala, Sweden,* ⁴*University of Bonn, Bonn, Germany*

Our work in coastal systems demonstrates that previous assumptions of specific sinks are flawed due to the complexity of the surfactant pool; while photodegradation of surfactant components has been documented, photoproduction of total surfactant activity (SA) occurs in SML samples, in addition to a temperature effect. Moreover, our freshwater system research suggests that SML SA behaviour varies seasonally over windspeeds of ~1-11 m/s, possibly due to total surfactant pool composition (i.e. in/soluble surfactant dominance). The microbiological community is a known surfactant source, and our upcoming work will investigate microbial surfactant processing in oceanic regions and under controlled environmental forcing variables.

Integrated multidisciplinary approaches and widespread sampling are central to improving our understanding of SML ecosystem function and its role in modulating air-water gas exchange.

HALOBATES: An autonomous research catamaran for high-resolution measurements of the sea-surface microlayer - *online*

Oliver Wurl¹, Mariana Ribas-Ribas¹, Lisa Gassen¹, Sven Emig¹, Ewald Judith

¹University Of Oldenburg, Wilhelmshaven, Germany

The sea-surface microlayer represents the boundary layer between the ocean and the atmosphere. Due to its interfacial (thickness < 1mm) and dynamic nature, representative observations are challenging, for example, for a mechanistic understanding of the role of the microlayer in the interaction between the ocean and the atmosphere. To fill this gap, we have developed the catamaran HALOBATES for autonomous operation over distances up to 10 km at moderate sea states. We integrated the rotating glass disk technique for continuous collection of the microlayer and sensor packages into a flow-through system to provide high-resolution observations at both spatial and temporal scales. A control station on the vessel allows switching to different modes of operation, and data are transmitted onboard for mission planning. We will present preliminary data on temperature and salinity anomalies in the microlayer together with freshwater flux observations.

Plenary session Integrated topic: Polar Ocean and Sea Ice

Session chair: K. Altieri Keynote speaker: Odile Crabeck

Odile Crabeck received her PhD degree in sea ice biogeochemistry from the Centre of Earth Observation Sciences (CEOS) University of Manitoba, Canada. Her research focuses on the different transport pathways of carbon dioxide through sea ice and the role of sea ice in polar ocean ecosystems. She has worked as a scientific coordinator for the Roland von Glasow-air-sea ice chamber facility at the University of East- Anglia, United Kingdom. In 2020, she was awarded a Fonds de la Recherche Scientifique (FNRS) fellowship to work at the University of Liège, Belgium, on micro-scale processes occurring in the sea ice matrix. Odile is involved in several internati-

onal working groups, notably BEPSII (Biogeochemical exchange processes at sea-ice interfaces). BEPSII's objective is to understand the role of sea ice on biogeochemical processes occurring in polar oceans.

Affiliation: Université de Liège , Liège, Belgium

Sea ice biogeochemistry and polar oceans: Important fact and challenge - on-site

At the interface between the ocean and atmosphere, sea ice modifies strongly the surface of the ocean properties and forms a seasonal, biogeochemically active ecosystem which impacts both the underlying seawater and the atmosphere. Sea ice increases the albedo and modifies light transmission pathways, sea ice forms physical barriers to momentum and heat exchange between the ocean and atmospheres. Sea ice processes also affect the atmospheric composition by decreasing air-sea fluxes of gases and aerosols with the potential for significant climate feedback through direct and indirect (cloud) forcing mechanisms. Sea ice is biologically active thanks to brine inclusions which are habitats for large communities of algae, with sea-ice biomass concentrations among the highest observed in marine environments. Sea ice is now recognised to also play a key role in the polar food web and the carbon and sulphur cycle of the polar oceans. Today, the response of the sea ice ecosystem to ongoing change in polar oceans is uncertain because of insufficient understanding of biogeochemical processes, and an inadequate description of these processes in models. I propose to give a broad overview of the role of sea ice biogeochemistry processes in the polar ocean and present how the sea ice communities tackle the challenges.

Bi-polar perspectives on projected changes in sea-ice algae blooms from a global sea ice-ocean coupled model - *online*

Hakase Hayashida^{1,2}, Nadja Steiner^{3,4}

¹Japan Agency For Marine-earth Science And Technology, Yokohama, Japan, ²University of Tasmania, Hobart, Australia, ³Environment and Climate Change Canada, Victoria, Canada, ⁴Fisheries and Oceans Canada, Sidney, Canada

The Arctic and Antarctic regions are both similar and different in many ways in which biogeochemical species are exchanged across the atmosphere, ocean, sea ice, snow, and land. How these similarities and differences play a role in projections of future changes, however, remains unknown. This study compares common sea-ice and snow properties at both poles simulated by a global sea ice-ocean coupled model that has recently incorporated sea-ice algae, the foundation of the sympagic ecosystem. The findings of this study can be used as a basis for describing how sea-ice properties control biogeochemical exchange processes and constraining projections of future changes.

Coupling of ocean-ice-atmosphere processes: from sea-Ice biogeochemistry to aerosols and Clouds (Clce2Clouds) - *on-site*

Nadja Steiner¹, Megan Willis²

¹Fisheries and Oceans Canada, Sidney, Canada ²Colorado State University, USA

We will be introducing the newly established SCOR working group Clce2Clouds which aims at addressing key uncertainties in the biological and chemical controls on atmospheric chemistry, aerosol and clouds in polar ocean environments. We will present the key goals of the working group as well as current and ongoing efforts: 1) prioritizing key coupled biological and chemical systems that drive atmospheric reactive trace gas, aerosol, and cloud properties in polar ocean environments. 2) Identifying similarities and differences in controls on exchange processes between the Arctic and Antarctic Ocean-Sea Ice-Snow-Atmosphere (O-SI-S-A) systems. 3) Developing a conceptual model of exchange processes in O-SI-S-A systems, focusing on key reactive trace gas and aerosol species (as prioritized). 4. Developing interdisciplinary campaign planning recommendations to guide future studies and address model and measurement gaps. 5. Facilitating capacity building opportunities for sustainable multidisciplinary science at the O-SI-S-A interface.

Polar sea-salt aerosols in CMIP6 models - online

Rémy Lapere¹, Jennie L. Thomas¹, Louis Marelle²

¹Institut des Géosciences de l'Environnement, de l'Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France, ²LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France

We present an inter-comparison of simulated sea-salt aerosols (SSA) in CMIP6 models including an evaluation compared to station observations in the Artic and Antarctic regions. Historical and future trends are also explored and connected to their driving mechanisms. Comparisons suggest (i) a large inter-model spread in SSA surface concentrations and optical depth, (ii) an overestimation of SSA surface concentrations compared to measurements, and (iii) difficulties in properly capturing the annual cycle of SSA at both poles. A generally increasing trend in SSA concentrations is found in CMIP6 over the last decades. For future scenarios, models show different trends amongst them and between poles for the period 2015-2100. The rationale for these large differences is investigated, possible consequences for the reliability of CMIP6 polar climate are discussed, and the sensitivity of the radiative budget to SSA in CMIP6 is assessed.

SOUTH AFRICA | 2022

Strengthening Partnerships between OASIS and the Global South

Co-conveners: Christa Marandino, Germany; Meghan Cronin, USA; Warren Joubert, South Africa; Seb Swart, Sweden

Observing Air-Sea Interactions Strategy (OASIS) works over many channels to build a sustainable air-sea observations network, complete with FAIR data and products. Observations of air-sea interactions are used to forecast floods, droughts, marine heatwaves, severe storms, and climate variability, as well as to monitor ocean CO2 absorption and resulting impacts on marine ecosystems. This network will revolutionize our ability to interrogate impacts from multiple stressors on ecosystems and build state-of-the-art ecological forecasts. However, we must work together to achieve these goals. Our "Theory of Change" turns the challenge of measuring multiple co-located parameters into a transformative opportunity to co-design a fit-for-purpose observing system. Multifunctional platforms are not only more economical than multiple single-function platforms, they also encourage collaborations across expertise. By developing best practices and technical readiness procedures, and a culture of mentorship and partnership, the capacity of the observing system could be significantly expanded while providing opportunities for Early Career Ocean Professionals and scientists from the Global South, as well as to engage industry partners.

Differences and commonalities in air-ice-ocean processes in the Antarctic and Arctic

Co-conveners: Nadja Steiner, Canada; Jessie Creamean, USA; Jennie Thomas, France; Lisa Miller, Canada

Polar regions are experiencing rapid climatic changes, causing the coupled physical and chemical oceansea ice-snow-atmosphere system to transition to an unprecedented and uncertain regime. Sea ice and snow are key features at the ocean-atmosphere interface. This interface controls chemical, physical, and biological drivers of atmospheric gases and aerosols, and resulting cloud properties, which impact the surface energy balance, sea ice melt and freeze-up processes, and atmospheric deposition to sea ice environments. Many processes, conditions, and drivers are different for Arctic versus Antarctic icescapes (e.g., freeze/melt processes, snow accumulation, atmospheric composition), leading to differences in ice and snow microstructure and biogeochemistry, which in turn impact exchange processes between the ocean and atmosphere. However, such processes can be poorly represented in models. To improve numerical model parameterizations and reproduce observed changes at both poles, including climate and Earth System Models (ESMs), we need to understand how these differences impact the earth system.

Poster session online

Tuesday, 27 Sep , 4.20-7 pm, online in gather.town

All attendees (also the on-site ones) are invited to attend the online poster session!

Online poster sessions during the conference will be held via the platform *gather.town*. <u>ALL poster</u> <u>presenters</u> (on-site and online), are required to upload and present their posters in gather.town. Note that all posters will be visible in gather.town during the whole day of the online poster session. For login information see page 11.

Author	Title		
Theme 1: Greenhou	se gases and the oceans		
Sohiko Kameyama	Dynamics of dissolved methane and its biogeochemical controlling factors in the Arctic Ocean	107	
Zhixuan Wang	The sea surface pCO2 over the South China Sea: data reconstruction and long-term trend analysis		
Ja-Myung Kim	Persistent Continental Shelf Carbon Sink at the leodo Ocean Research Station in the Northern East China Sea	109	
Yaohua Luo	Sea surface pCO2 dynamics in the East China Sea and its controlling processes based on buoy time-series observations	110	
Mohamed Ahmed	A neural network-based estimate of the air-sea CO2 fluxes during the open water season in an Inland Arctic Shelf Sea	111	
Haonan Wang	Methane distribution, production, and emission in the Western North Pacific	112	
Rachel Stanley	Carbon dioxide drawdown due to biological productivity in the coastal Northeastern Atlantic: Spatial and seasonal trends	113	
Gaobin Xu	Photo-biogeochemical cycling of carbon monoxide in the Eastern Indian Ocean	114	
SIOA	SOLAS/IMBeR Ocean Acidification (SIOA)	115	
Theme 2: Air-sea int	terface and fluxes of mass and energy		
Adeola Michael Dahunsi	COWCLIP CMIP5-based General Circulation Models dataset: A tool for assessing the extremes of wave climate in the Gulf of Guinea	207	
Hisahiro Takashima	Iodine monoxide (IO) variations in the global marine boundary layer	208	
Luo Chenghan	Evaluation of the effect of WRF physical parameterisations on Typhoon bottom wind speed simulation in the Taiwan Strait	209	
Regiane Moura	A regional overview of CMIP6 simulated surface temperatures and heat fluxes over Southern Atlantic Ocean	210	

Poster session

Poster session online

Tuesday, 27 Sep , 4.20-7 pm, online in gather.town

Author	Title	No.
Theme 2: Air-sea in	terface and fluxes of mass and energy	
Bian Yishu	Differences in aerosol and CCN characteristics transported by oceanic air mass and land air mass in urban agglomeration on the west coast of the Strait	211
Manon Rocco	Air-sea fluxes of biogenic and oxygenated organic gases from biologically productive waters in the South-West Pacific via ship-born mesocosm studies	212
Leonie Esters	In-Situ Observations of Turbulence-Based Air-Sea Gas Exchange in the Coastal North Sea	213
Marcelo Dourado	Ocean-Atmosphere interaction in a Brazilian Coast Upwelling	214
Thaís Sarmento	Direct observations of ocean-atmosphere heat fluxes in the Western Tropical Atlantic	215
Mansi Gupta	Spatio-temporal variation and relationship between air-sea exchanges of DMS and VOCs over the northern Indian Ocean during post-monsoon season	216
OASIS	Observing Air-Sea Interaction Strategy (OASIS)	217
Theme 3: Atmosph	eric deposition and ocean biogeochemistry	
Mingjin Tang	Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash	308
Andrea Milinković	Impacts of biomass burning versus anthropogenic aerosol deposition on the surface layers in the central Adriatic Sea: A mesocosm study	309
Wylee Fitz-Gerald	Investigating the impact of aerosols on primary producers in the Northeast Pacific Ocean	310
Mei Zheng	Contribution of Anthropogenic Source to Marine Aerosol in Northwest Pacific Ocean	311
Minhan Dai	Carbon Fixation and Export in oligotrophic ocean (Carbon-FE)	312
Theme 4: Interconr	nections between marine ecosystems, aerosols, and clouds	
Dihui Chen	Strong formation of NO2CI in the marine atmosphere over the northwest Pacific associated with submarine volcanic eruption	404
Guillaume Chamba	Formation of atmospheric nanoparticles over open ocean	405
Mingxi Yang	No aerosols, no cloud? - atmospheric effects of ship exhausts and changes since the 2020 ship sulfur emission regulation	406

Poster session

Poster session online

Tuesday, 27 Sep , 4.20-7 pm, online in gather.town

Author	Title	No.
Theme 4: Interconn	ections between marine ecosystems, aerosols, and clouds	
Wenxin Cui	Source apportionment of cloud condensation nuclei in the northwestern Pacific during the spring of 2021	407
Kaori Kawana	Fluorescent bioaerosol particles over the Pacific Ocean: covariation with ocean-surface biological activity indicators	408
Yating Gao	Unexpected high field blank and new findings in monitoring reactive gases and their particulate counterparts in the marine atmosphere over the Northwest Pacific using an AIM-IC	409
Theme 5: Ocean bio	geochemical control on atmospheric chemistry	
Yuzo Miyazaki	Effects of marine nitrogen fixation on atmospheric emissions of reactive nitrogen revealed by a laboratory incubation experiment	510
Royston Uning	The interplay between the marine atmospheric boundary layer VOCs and the surface ocean bacteria and bacterial-derived DOM cycles: A laboratory and field studies	511
Yoko Iwamoto	Spatial distribution of iodine in the tropical western North Pacific surface water	512
Frances Hopkins	From genes to models: Molecular insight into reduced sulfur cycling in temperate shelf sea waters	513
Margarita Reza	Reduction of lodate in aqueous organic and inorganic aerosol particle proxies	514
Yugo Kanaya	Tropospheric ozone depletion and iodine chemistry over the western Pacific low-latitude region: Project overview and model system development toward a global assessment	515
Andrea Baccarini	A multisite study on the drivers and processes responsible for particulate iodine variability across the Arctic.	516
Integrated topic: Po	lar oceans and sea ice	
Fernanda Casagrande	An overview of CMIP5 and CMIP6 Antarctic sea ice simulations	606
Holly Winton	Ice core biomarker constraints on past sea ice and marine primary production change in the Ross Sea region	607

Poster session online

Tuesday, 27 Sep , 4:20-7 pm, online in gather.town

Author	Title	No.					
Integrated topic: Po	Integrated topic: Polar oceans and sea ice						
Tonya Burgers	rgers Water mass distributions and carbon dynamics across the North Water and Nares Strait						
George Manville	Large dimethylsulfide concentration variability across ocean-ice- snow interfaces in the Antarctic springtime marginal ice zone	609					
CATCH	Cryosphere and Atmospheric Chemistry (CATCH)	610					
BEPSII Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII)		611					
Integrated topic: Up	owelling systems						
Fumikazu Taketani	mikazuDirect observation of surface primary productivity influenced by wetketanideposition at subtropical Northwestern Pacific						
SOLAS science and s	society						
Xiuwen Guo	Persistent threat to coastal ecosystems from marine heatwaves	616					
Huan Liu	Impact Assessment and Prediction of Regulations on Decarbonization of International Shipping	617					
Additional poster							
OLAR	Ocean-Land-Atmosphere Research (OLAR)	701					

Daily overview - Wednesday

Time	Wednesday, 28 Sep					
08:30	Theme 4: Interconnections between marine ecosystems, aerosols, and clouds					
	Introduction by sessions chairs: M. Kanakidou and J. Ovadnevaite					
08:40	B. Wang (China): Micro-spectroscopic characterization and ice formation potential of marine related aerosol particles - <i>online</i>					
09:10	K. Fossum (Ireland): Marine aerosol-cloud interactions and investigations into typical degrees of air pollution over the Southern Ocean - <i>on-site</i>					
09:30	M. Mallet (Australia): Contrasting aerosol, cloud, precipitation, and radiation interactions at low and high Southern Ocean latitudes - <i>online</i>					
09:50	K. Sellegri (France): Sea2Cloud: from biogenic emission fluxes to cloud properties in the South West Pacific - <i>on-site</i>					
10:10	Coffee and tea break					
10:40	Indian Ocean / Upwelling Introduction by session chairs: A. Mahajan and A. Singh / M. Cornejo and A. Körtzinger					
11:00	Z. Lachkar (UAE): Air-sea interaction and physical-biogeochemical coupling in the Indian Ocean: examples of recent advances and gaps in understanding - <i>on-site</i>					
11:30	P. Panda (India): Atmospheric Dry deposition of Mineral Dust and associated nutrient supply and their solubility over the Indian Ocean during Vernal Summer months - <i>online</i>					
11:50	M. Ragoasha (South Africa): Eastern Boundary Upwelling Systems in a warming world: inconsistence trends - <i>on-site</i>					
12:10	R. Oliveira (Brazil): The tropical and subtropical South Atlantic Ocean biogeochemistry responses for the IPCC AR5 future scenarios using EcoGEnIE 1.0 - <i>on-site</i>					
12:30	Lunch					
13:30	Discussion sessions: Crosswinds in Safe Landing Climates - Lisa Miller, Canada; Neil Harris, UK; Erik van Doorn, Germany					
14:50	Coffee and tea break					
15:00	SOLAS science and global ship emissions – common challenges and next steps - Christa Marandino, Germany; Tom Bell, UK; Anna Rutgersson, Sweden; Zongbo Shi, UK					
16:20	Coffee break (during poster session)					
16:30 – 17:50	Open Science and Publishing- Community Needs and Challenges - Jamie Males & Emma Archer, PLOS Climate, UK					
18:00 – 19:00	Virtual networking event on gather.town					
19:30	Conference banquet					

Plenary session Theme 4: Interconnections between marine ecosystems, aerosols, and clouds

Session chairs: M. Kanakidou and J. Ovadnevaite Keynote speaker: Bingbing Wang

Bingbing Wang received his Ph.D. degree in Marine and Atmospheric Sciences at Stony Brook University, USA. He is interested in atmospheric aerosol and their environmental and climatic impacts. His research focuses on lab simulation and field observation for the characterization, multiphase chemistry, and phase transitions of atmospheric particles from different sources and environments. Recently, his group is working on the physicochemical characteristics of marine related aerosol particles based on single particle analysis and their abilities to serve as ice nuclei and potential parameterizations for cloud modeling.

Affiliation: Xiamen University | Xiamen | China

Micro-spectroscopic characterization and ice formation potential of marine related aerosol particles - *online*

Aerosol particles can serve as cloud condensation nuclei and ice nuclei to form clouds and impact on the Earth's energy budget and thus on climate. The ability of marine aerosol particles to form clouds are related to their physicochemical properties, which are affected not only by marine emissions but also by atmospheric aging processes. Here we present micro-spectroscopic characterization of the field collected and laboratory generated marine related particles. Their abilities to form ice crystals were determined at typical conditions for cirrus cloud formation. Single particle techniques were applied to hundreds of individual particles to obtain information on the particle composition and mixing state. Ice nucleating particles were identified and characterized for comparison to particle population. Potential parameterization of the experimentally determined ice nucleation data will also be discussed for cloud modeling.

Marine aerosol-cloud interactions and investigations into typical degrees of air pollution over the Southern Ocean - *on-site*

<u>Kirsten Fossum</u>¹, Jurgita Ovadnevaite¹, Darius Ceburnis¹, Jana Preissler^{1,6}, Dantong Liu², Michael Flynn³, Jefferson Snider⁷, Ru-Jin Huang^{1,5}, Andreas Zuend⁴, Colin O'Dowd¹

¹University of Galway, Galway, Ireland, ²Zhejiang University, Hangzhou, China, ³University of Manchester, Manchester, UK, ⁴McGill University, Montreal, Canada, ⁵Chinese Academy of Sciences, China, ⁶Leosphere, Vaisala, , France, ⁷University of Wyoming, Laramie, USA

Marine aerosol affects global climate significantly by forming haze and cloud layers over dark ocean surfaces, enhancing albedo. While sulfate typically dominates the submicron cloud condensation nuclei (CCN) over remote oceans, it is unclear how important this abundance is over sea-spray CCN activation efficiency in marine cloud formation. Aerosol measurements from the PEGASO cruise (2015) were used to investigate marine aerosol physico-chemistry. Refractory black carbon measurements were used to create a statistical method to assess the degrees of pollution in Southern Ocean air and separate out polluted measurements. An extensive study of the CCN in the clean air masses in the Southern Ocean showed a systematic inverse relationship between sea-salt cloud nuclei and boundary layer cloud peak superstation, despite the abundance of sea-salt CCN being 10 times lower than sulfate CCN. This sea-salt effect can theoretically alter the albedo of marine boundary layer clouds by as much as 30%.

Contrasting aerosol, cloud, precipitation, and radiation interactions at low and high Southern Ocean latitudes - *online*

Marc Mallet¹, Branka Miljevic², Ruhi Humphries^{3,1}, Simon Alexander^{4,1}, Alain Protat^{5,1}, Gerald Mace⁶

¹Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia, ²School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia, ³Climate Science Centre, Oceans and Atmosphere, CSIRO, Melbourne, Australia, ⁴Australian Antarctic Division, Kingston, Australia, ⁵Bureau of Meteorology, Melbourne, Australia, ⁶University of Utah, Salt Lake City, United States of America

Most climate models exhibit biases in the amount of surface shortwave radiation in the Southern Ocean. The biological and physical sources of aerosol and their influence on clouds, precipitation, and radiation around the Southern Ocean is a key component of this problem. This issue has motivated a number of recent and upcoming field campaigns in the Southern Ocean. Here we present findings from the summertime CAPRICORN-2018 study that took place in the western Pacific sector of the Southern Ocean. We explore the relationship between biogenic aerosol properties, cloud condensation nuclei, and cloud droplet number concentrations, and show how this relationship varies at lower and higher latitudes. The abundance of supercooled liquid water clouds and relative lack of precipitation at higher latitudes, possibly due to lower concentrations of ice-nucleating aerosol particles, has possible implications for boundary layer aerosol size distributions and cloud condensation nuclei concentrations.

Sea2Cloud: from biogenic emission fluxes to cloud properties in the South West

Pacific - on-site

<u>Karine Sellegri</u>¹, Cliff Law², Mike Harvey², Maija Peltola¹, Theresa Barthelmess³, Manon Rocco¹, Erin Dunne⁴, Alexia Saint-Macary², Guillaume Chamba¹, Clémence Rose¹, Evelyn Freney¹, Clément Bazantay¹, Olivier Jourdan¹

¹Lamp-cnrs, Clermont-Ferrand, France, ²NIWA, Wellington, New-Zealand, ³GEOMAR, Kiel, Germany, ⁴CSIRO, Melbourn, Australia

The goal of the Sea2Cloud project is to study the interplay between surface ocean biogeochemical and physical properties, fluxes to the atmosphere and ultimately their impact on cloud formation under minimal direct anthropogenic influence. Here we present an interdisciplinary approach, combining atmospheric physics and chemistry with marine biogeochemistry, during a voyage between 41 and 47°S in March 2020. In parallel to ambient measurements of atmospheric composition and seawater biogeochemical properties, we describe semi-controlled experiments to characterize nascent sea spray properties and nucleation from gas-phase biogenic emissions. The experimental framework for studying the impact of the predicted evolution of ozone concentration in the Southern Hemisphere is also detailed. After describing the experimental strategy, we will present a short overview of first results, comparison to measurements performed at the Baring Head Research station, NZ and potential extend to the regional scale using satellite data and modelling tools.

SOUTH AFRICA | 2022

Plenary session Integrated topic: Indian Ocean

Introduction by session chairs: A. Mahajan and A. Singh Keynote speaker: Zouhair Lachkar

Zouhair Lachkar is a senior scientist at New York University Abu Dhabi, United Arab Emirates, since 2014. He received his Ph.D. from University Pierre and Marie Curie, France, and worked as a research scientist at the Swiss Federal Institute of Technology of Zurich, ETH Zurich, Switzerland, between 2007 and 2014. His research interests are in the areas of climate and marine biogeochemistry. In particular, he has been investigating the marine oxygen and carbon cycles in major upwelling syst tems and their sensitivity to climate perturbations using a hierarchy of numerical models applied to various regions

of the World Ocean, with a recent focus on the Arabian Sea and the Indian Ocean at large.

Affiliation: Arabian Center for Climate and Environmental Sciences (ACCESS) | *New York University Abu Dhabi* | *United Arab Emirates*

Air-sea interaction and physical-biogeochemical coupling in the Indian Ocean: examples of recent advances and gaps in understanding - on-site

Uniquely influenced by ocean-atmospheric coupling through seasonally reversing monsoon winds, the Indian Ocean also impacts the earth's climate through varying physical and biogeochemical processes operating on multiple timescales. On the timescale of the climate change perturbation, the Indian Ocean plays an important role in taking up anthropogenic CO2 from the atmosphere and modulating the global natural carbon and nitrogen cycles. For instance, hosting the world's thickest oxygen minimum zone (OMZ), the Arabian Sea in the northern Indian Ocean is a hotspot of biogeochemical transformations and a major denitrification area, where bio-available nitrogen is depleted and nitrous oxide, a potent greenhouse gas, is produced. While our understanding of the dynamics of the Indian Ocean biogeochemistry and air-sea exchanges has recently advanced through coordinated international efforts, the Indian Ocean remains one of the most poorly sampled ocean regions with respect to inorganic carbon, oxygen and nutrients. Here, I will briefly overview some recent advances in our understanding of the Indian Ocean biogeochemistry and will illustrate with examples from the northern Indian Ocean (i.e., Arabian Sea and Bay of Bengal) the importance of air-sea interactions for regional biogeochemistry as well as describe how recent changes in atmospheric conditions (warming and wind variability) are altering local environments, in particular through changes in dissolved O2, and how this in return may impact regional and global climate on longer timescales.

Atmospheric Dry deposition of Mineral Dust and associated nutrient supply and their solubility over the Indian Ocean during Vernal Summer months – *online*

Prema Piyusha Panda^{1,2}, Ashwini Kumar¹

¹CSIR-National Institute of Oceanography, Doan Paula, India, ²The School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India, Taleigao Plateau, India

The importance of aerosol as a source of nutrients and its role in altering surface marinebiogeochemistry is well known. Mineral dust and nutrients (N-species, Fe, Mn, Cu) were measured in aerosols collected during two cruises along meridional transit over the Indian ocean (IO) starting from Indian coast up to 13° S latitude. Our result shows relatively higher dust concentration over the North Indian Ocean in contrast to its southern counterpart with a decreasing trend towards south. Almost similar trend is displayed by all nutrients during the two campaign. Organic-nitrogen account for ~76% of total-nitrogen over IO. Large variability is seen in fractional Fe solubility (0.04-3.9%) with partial influence from anthropogenic emission. However, higher solubility of Mn (1.2-64%) and Cu (4-92%) along with higher enrichment factor signifies a mix origin of these elements over IO. The average deposition flux (in nmol.m-2.d-1) of Fe, Mn and Cu was 4965±5148, 1476±3447 and 1.0±1.7 respectively.

Plenary session Integrated topic: Upwelling

Introduction by session chairs: M. Cornejo and A. Körtzinger Keynote speaker: Moagabo Ragoasha

Moagabo Ragoasha holds a co-badged PhD in physical oceanography between the University of Cape Town (UCT), South Africa, and The University of Western Brittany, France (Université de Bretagne Occidentale, UBO). After her PhD, she did one year of postdoctoral research at UCT and the South African Environmental Observation Network (SAEON) Egagasini Node before being appointed lecturer in the Department of Oceanography. She has been recognized by the 2020 Mail & Guardian as a Top 200 Young South African in the Science and Technology category.

She is currently a New Generation of Academics Programme (nGAP) lecturer at the Department of Oceanography with research interests including ocean and atmospheric modelling of the South African EEZ, the physical connectivity between Agulhas and the Benguela system, and the anthropogenic influences on the coastal environment.

Affiliation: University of Cape | Town Cape Town | South Africa

Air-sea interaction and physical-biogeochemical coupling in the Indian Ocean: examples of recent advances and gaps in understanding - on-site

Uniquely influenced by ocean-atmospheric coupling through seasonally reversing monsoon winds, the Indian Ocean also impacts the earth's climate through varying physical and biogeochemical processes operating on multiple timescales. On the timescale of the climate change perturbation, the Indian Ocean plays an important role in taking up anthropogenic CO2 from the atmosphere and modulating the global natural carbon and nitrogen cycles. For instance, hosting the world's thickest oxygen minimum zone (OMZ), the Arabian Sea in the northern Indian Ocean is a hotspot of biogeochemical transformations and a major denitrification area, where bio-available nitrogen is depleted and nitrous oxide, a potent greenhouse gas, is produced. While our understanding of the dynamics of the Indian Ocean biogeochemistry and air-sea exchanges has recently advanced through coordinated international efforts, the Indian Ocean remains one of the most poorly sampled ocean regions with respect to inorganic carbon, oxygen and nutrients. Here, I will briefly overview some recent advances in our understanding of the Indian Ocean biogeochemistry and will illustrate with examples from the northern Indian Ocean (i.e., Arabian Sea and Bay of Bengal) the importance of air-sea interactions for regional biogeochemistry as well as describe how recent changes in atmospheric conditions (warming and wind variability) are altering local environments, in particular through changes in dissolved O2, and how this in return may impact regional and global climate on longer timescales.

The tropical and subtropical South Atlantic Ocean biogeochemistry responses for the IPCC AR5 future scenarios using EcoGEnIE 1.0 - on-site

Raquel Oliveira¹, Malin Ödalen², Jamie Wilson³, Francisco Virissimo⁴, Helen Affe¹, Leticia Cunha¹

¹*Rio de Janeiro State University, Rio de Janeiro, Brazil,* ²*GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany,* ³*University of Bristol, Bristol, England,* ⁴*National Oceanography Centre, Southampton, England*

The South Atlantic Ocean receives the discharge from some of the largest world rivers and its eastern margin holds important upwelling systems (Mauritania and Benguela). These systems directly affect the regional biogeochemical and planktonic community, largely responsible for the regional carbon cycle, which also has an impact on the climate. The goal of this study is to assess the plankton groups by their different size classes (pico, nano and micro), and their relation to the sea surface temperature, surface nutrients, chlorophyll concentration, and other biogeochemistry parameters, under the IPCC's scenarios RCP4.5 and RCP8.5, and in a scenario without additional anthropogenic carbon, between 2095-2100, using the global model EcoGEnIE 1.0, a trait-based plankton ecosystem model coupled with an Earth System Model of Intermediate Complexity. The novel results of this work will contribute to the understanding of its biogeochemical cycles according to future scenarios.

Crosswinds in Safe Landing Climates

Co-conveners: Lisa Miller, Canada; Neil Harris, UK; Erik van Doorn, Germany

The World Climate Research Programme (WCRP) has launched a lighthouse activity on Safe Landing Climates to explore routes to "safe landings" for future human and natural systems. The Safe Landing Pathways working group is formulating a climate gaming exercise to synthesize the feedbacks, trade-offs, and co-benefits in climate change mitigation and adaptation and is gathering insights from different sectors of the climate change research community to inform the development of this research and teaching tool. The first phase has involved compiling information about existing work using gaming for climate problems. The second phase is gathering expert input on aspects of the Earth/climate system to be considered in upcoming exercises.

In this discussion session, the WCRP wants to hear the SOLAS community's hopes and fears about oceanatmosphere interactions in the coming decades, as we try to navigate towards a safe global climate.

SOLAS science and global ship emissions – common challenges and next steps

Co-conveners: Christa Marandino, Germany; Tom Bell, UK; Anna Rutgersson, Sweden; Zongbo Shi, UK

Shipping is the most widely used medium for transport of goods internationally and, although it is a carbon-efficient transport medium, there is an increasing focus on its broader environmental consequences. Ship exhausts are a significant source of sulfur, nitrogen, and other gaseous pollutants, as well as sulfur(S)-containing aerosols, to the marine atmosphere and to the ocean. Global modelling suggests ship emissions cause a negative radiative forcing by forming sulfate aerosols and by modifying cloud properties. The range of SOLAS endorsed ship emissions projects seek to investigate the role of these emissions on atmospheric and oceanic processes. Because this topic has both economic and legal aspects, the proponents seek to engage a range of stakeholders (e.g., shipping companies, ports, policy-makers), with mixed success. Lessons learned within the community could help other researchers facing the same challenges. In addition, there appears to be significant interest within the SOLAS community on this topic and we could benefit from an open discussion on results to-date and future perspectives.

Open Science and Publishing - Community Needs and Challenges

Co-conveners: Jamie Males & Emma Archer, PLOS Climate, UK

Whilst there is increasing recognition of the value of Open Science, more widespread funder mandates and more stringent community expectations, there remain challenges and constraints around the adoption of Open Science practices. We propose to hold a dialogue with the purpose of identifying these barriers as they pertain to the SOLAS community, with a particular focus on transparency and data/code sharing as part of peer-reviewed publication. We will discuss whether there are actions that researchers, publishers and other stakeholders in the research ecosystem should take to facilitate wider and more meaningful engagement with Open Science, and whether new approaches are needed to maximise the accessibility and relevance of research outputs to key decision-makers.

Time	Thursday, 29 Sep
08:30	Theme 5: Ocean biogeochemical control on atmospheric chemistry
	Introduction by session chairs: M. Kanakidou and T. Latif
08:40	M. Galí (Spain) : From weather to climate scales in ocean biogeochemistry-atmospheric chemistry studies: mind the gaps - <i>on-site</i>
09:10	M. Peltola (Finland): Marine aerosol formation and its chemical precursor species in coastal New Zealand - <i>on-site</i>
09:30	S. Pongpiachan (Thailand) : Applying synchrotron radiation-based attenuated total reflection-fourier transform infrared to evaluate the effects of shipping emissions on fluctuations of PM10-bound organic functional groups - <i>on-site</i>
09:50	L. Zhou (Germany): Winter season Southern Ocean distributions of climate-relevant trace gases - <i>on-site</i>
10:10	Coffee and tea break
10:40	Climate Intervention / Science and Society
10:40	Climate Intervention / Science and Society Introduction by session chairs: E. van Doorn and A. Lenton
10:40 11:00	Climate Intervention / Science and Society Introduction by session chairs: E. van Doorn and A. Lenton N. Mengis (Germany): Carbon Dioxide Removal measures - Feasibility, uncertainties, and their contribution to net-zero - <i>online</i>
10:40 11:00 11:30	Climate Intervention / Science and SocietyIntroduction by session chairs: E. van Doorn and A. LentonN. Mengis (Germany): Carbon Dioxide Removal measures - Feasibility, uncertainties, and their contribution to net-zero - onlineP. Monteiro (South Africa): Building a national integrated observational and modelling capability to support the assessment of ocean CDR in South Africa for robust policy development - on-site
10:40 11:00 11:30 11:50	Climate Intervention / Science and SocietyIntroduction by session chairs: E. van Doorn and A. LentonN. Mengis (Germany): Carbon Dioxide Removal measures - Feasibility, uncertainties, and their contribution to net-zero - onlineP. Monteiro (South Africa): Building a national integrated observational and modelling capability to support the assessment of ocean CDR in South Africa for robust policy development - on-siteE. Mahu (Ghana): Putting Science to Action - online
10:40 11:00 11:30 11:50 12:10	Climate Intervention / Science and SocietyIntroduction by session chairs: E. van Doorn and A. LentonN. Mengis (Germany): Carbon Dioxide Removal measures - Feasibility, uncertainties, and their contribution to net-zero - onlineP. Monteiro (South Africa): Building a national integrated observational and modelling capability to support the assessment of ocean CDR in South Africa for robust policy development - on-siteE. Mahu (Ghana): Putting Science to Action - onlineH. Liu (China): Global shipping emission inventories with high spatial and temporal resolution - online
10:40 11:00 11:30 11:50 12:10 12:30	Climate Intervention / Science and SocietyIntroduction by session chairs: E. van Doorn and A. LentonN. Mengis (Germany): Carbon Dioxide Removal measures - Feasibility, uncertainties, and their contribution to net-zero - onlineP. Monteiro (South Africa): Building a national integrated observational and modelling capability to support the assessment of ocean CDR in South Africa for robust policy development - on-siteE. Mahu (Ghana): Putting Science to Action - onlineH. Liu (China): Global shipping emission inventories with high spatial and temporal resolution - onlineJ. Dinasquet (USA): Sea-air transfer and dispersal of harmful sea spray aerosols - on-site

Plenary session Theme 5: Ocean biogeochemical control on atmospheric chemistry

Introduction by session chairs: M. Kanakidou and T. Latif Keynote speaker: Martí Galí

Martí Galí is an environmental scientist interested in the interaction between marine plankton and climate, which he studies by means of experimental and sea-going studies, analysis of Earth observation data and models. Over the last 15 years, most of his research has revolved around the biogeochemical cycling of dimethylsulfide (DMS) and related compounds in the upper ocean. He also developed remote sensing algorithms for the estimation of marine DMS emission, which prompted frequent collaboration with atmospheric chemists. Other research areas he is interested in are

the biogeochemistry of polar environments and the biological carbon pump. Bio-optics, light-driven processes, microbial ecology and biogeochemical budgets are cross-cutting themes in his research.

Affiliation: Institut de Ciències del Mar (ICM, CSIC) | Barcelona | Spain

From weather to climate scales in ocean biogeochemistry-atmospheric chemistry studies: mind the gaps - on-site

It is commonplace to state that ocean biogeochemistry (OBGC) and atmospheric chemistry (AC) interact across a wide range of spatiotemporal scales. However, some scales are better studied than others. In this talk, I argue that, mainly because of historical logistic constraints, scales where relevant variability and interactions reside remain underexplored. In particular, I make the case for studying in greater depth how the weather timescale, where synoptic events take place, successively shapes intraseasonal and interannual variability. Understanding and predicting OBGC-AC interactions at these scales has become a pressing need because climate change is altering the frequency and magnitude of extreme events and shifting the mean seasonal cycles. In some regions, these perturbations are pushing the coupled oceanatmosphere system beyond critical thresholds. Ongoing advances in Earth observation from remote and in situ autonomous platforms, numerical modeling and data science are making the understudied scales accessible at unprecedented resolution. In this talk, I will explore these ideas and illustrate them with examples drawn from both the literature and my own research, centred mostly on upper-ocean dimethylsulfide cycling and its impact on aerosols in polar regions. Finally, I will propose some pathways for advancing this research program, which will benefit from incorporating concepts and approaches developed in neighbouring research fields (e.g. weather/climate prediction, ecology) and from intensifying the collaboration between the ocean and atmosphere communities.

Marine aerosol formation and its chemical precursor species in coastal New Zealand - *on-site*

Maija Peltola^{1,2}, Clémence Rose², Jonathan Trueblood², Sally Gray³, Mike Harvey³, Karine Sellegri²

¹INAR / Physics, University of Helsinki, Helsinki, Finland, ²Laboratoire de Météorologie Physique, Aubière, France, ³National Institute of Water & Atmospheric Research Ltd (NIWA), Wellington, New Zealand

Despite the importance of oceans in regulating global climate, marine aerosol measurements are scarce. To better constrain climate models, more information is needed to understand the role and sources of secondary marine aerosols.

We measured the aerosol size distribution and chemical composition of ambient ions at the Baring Head station in coastal New Zealand over several months. The station regularly receives air masses arriving from the Southern Ocean and passing over the biologically active Chatham Rise area before arriving at the station. We used the data to study secondary aerosol formation and its chemical precursor species in clean marine air.

We observed sub-10 nm particles and growth of nucleation mode particles frequently in the marine boundary layer. These particles were likely formed from sulfur and iodine species. Studying the seasonal variations and geographical source regions of different chemical compounds abled connecting different chemical compounds to marine biogeochemical sources.

Applying Synchrotron Radiation-based Attenuated Total Reflection-Fourier Transform Infrared to Evaluate the Effects of Shipping Emissions on Fluctuations of PM10-Bound Organic Functional Groups - on-site

<u>Siwatt Pongpiachan</u>¹, Kanjana Thumanu, Chulalak Chantharakhon, Chunmanus Phoomalee, Chaisri Tharasawatpipat, Ronbanchob Apiratikul, Saran Poshyachinda

¹School of Social and Environmental Development, National Institute Of Development Administration, Huamark, Bangkapi, Thailand

The intense light of synchrotron radiation, with the assistance of infrared spectroscopy, allows for the measurement of extremely low levels of organic functional groups. In this study, PM10 samples (n = 84) were collected at three air quality observatory sites strategically situated on the periphery of the seaport, residential zone, and industrial area of Laem Chabang, Thailand from May 27 to June 23, 2020. Aliphatic carbons, carbonyl species, organo-nitrates, aromatic nitro compounds, ammonium ions, carbonate, nitrate ions, sulfate species, and calcium carbonate were successfully characterised in all PM10 samples. Sulfate and aliphatic carbons were the two dominant chemical species detected at all monitoring sites. While aliphatic carbons, organo-nitrates, and aromatic nitro compounds were closely related to shipping activities, sea salt aerosols and fertiliser dust can be considered as two potential sources of sulfate and ammonium, respectively.

Winter season Southern Ocean distributions of climate-relevant trace gases -

on-site

Li Zhou¹, Dennis Booge¹, Miming Zhang², Christa Marandino¹

¹GEOMAR - Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, ²Third Institute of Oceanography, China

Climate-relevant trace gas fluxes exert an important control on air quality and climate, especially in remote regions of the planet such as the Southern Ocean. However, almost all of the measurements there are skewed to summer months. It is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulphide (DMS, and related sulphur compounds) and isoprene in the Atlantic sector of the Southern Ocean during winter to understand the spatial and temporal distribution in comparison to current knowledge and climatological calculations for the Southern Ocean. The observations of isoprene are the first in the winter season in the Southern Ocean. We find that concentrations and fluxes of DMS and isoprene in the investigated area are generally lower than those presented or calculated in currently used climatologies and models. More data is needed to better interpolate climatological values and validate process-oriented models.

SOUTH AFRICA | 2022

Plenary session Climate Intervention

Introduction by session chairs: : E. van Doorn and A. Lenton Keynote speaker: Nadine Mengis

Nadine Mengis is an Emmy Noether Independent Junior Research Group Leader at GEOMAR Helmholtz Centre for Ocean research Kiel since October 2021. Her project 'FOOTPRINTS - From carbon removal to achieving the Paris Agreement's goal: temperature stabilisation' aims to investigate the Earth systems response to net-zero CO2 pathways. Nadine is trained in climate physics and holds a PhD in Earth system modelling. She worked on the impact of non-CO2 climate forcing agents on the remaining carbon budget, and the assessment of national net-zero

solution with a focus on carbon dioxide removal and carbon accounting. Since 2021, Nadine is a member of GESAMP WG41, where she contributes to the development of a comprehensive assessment framework for marine climate interventions.

Affiliation: GEOMAR - Helmholtz Centre for Ocean Research Kiel | Kiel | Germany

Carbon Dioxide Removal measures - Feasibility, uncertainties, and their

contribution to net-zero - online

"In order to achieve the long-term temperature goal set out in Article 2 [of the Paris Agreement (PA)], Parties aim to reach global peaking of greenhouse gas emissions as soon as possible, [...] and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century, [...]." (Article 4, Paris Agreement, UNFCCC).

Based on this statement carbon dioxide removal (CDR) are considered a key element to achieve the PA long-term temperature goal. However, considering the scale at which CDR deployment is envisioned in ambitious mitigation pathways, significant environmental, social, ethical and institutional implications are to be expected and need to be included in their assessments. The implementation, and accordingly the potential of CDR measures, furthermore, depends on site specific conditions, such as biophysical conditions, availability of infrastructure, social acceptance, regulatory frameworks and policy instruments in place.

In this talk, I will present an overview of CDR options currently being considered in the debate, their possible contribution to net-zero on the example of Germany. I will continue by discussing challenges concerning their feasibility, monitoring and evaluation on the example of ecosystem-based marine CDR options. Finally, it has been shown that reductions in energy and or food demand could reduce the need for CDR. And while there is some reluctance to discuss such societal changes, I will argue that policy measures enabling societal changes are not necessarily ethically problematic. Moreover, doing so can be beneficial in ways other than reducing emissions.

Building a national integrated observational and modelling capability to support the assessment of ocean CDR in South Africa for robust policy development - on-site

Sandy Thomalla¹, <u>Pedro Monteiro¹</u>, Precious Mongwe¹, Siya Hamnca¹, Sarah Nicholson¹, Nicolette Chang¹, Mutshushu Tsanwani³, Warren Joubert⁴

¹Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR., Cape Town, South Africa, ²Marine and Antarctic Research centre for Innovation and Sustainability (MARIS), UCT., Cape Town, South Africa, ³Department of Forestry, Fisheries and the Environment, Cape Town, South Africa, ⁴South African Weather Service, Cape Town, South Africa

The ocean is likely to play a central role towards achieving negative emissions through Carbon Dioxide Removal (CDR). However we need to understand the complex feedback-mitigation interactions in order to assess and execute effective mitigation scenarios. The Southern Ocean Carbon-Climate Observatory (SOCCO) recognises a major gap in our current national capability to adequately address the science and policy needs around proposed CDR interventions. SOCCO will start to address this gap by 1) putting in place a high confidence baseline through national coastal CO₂ observations and machine learning products that resolve the seasonal cycle and build on the observational synergies of national partners, namely DFFE (ships), SAEON (coastal moorings) and SOCCO (gliders), and 2) Conduct well considered forced ocean high resolution (1-10 km) modelling experiments, co-designed with the national policy entities, to evaluate sensitivities of the regional ocean carbon system to proposed CDR technologies. Here we present these capabilities and ambitions.

Plenary session Science and Society

Introduction by session chairs: : E. van Doorn and A. Lenton Keynote speaker: Edem Mahu

Edem Mahu is a Marine Biogeochemist and climate scientist at the Department of Marine and Fisheries Sciences of the University of Ghana. Her research interests span Paleoclimatic and environmental reconstructions of marine ecosystems, Marine Pollution (nutrients, microplastics, heavy metals and their fate in the marine environment), understanding redox processes in coastal ecosystems and nature-based solutions. She has received research supports from the IFS, UNESCO-OWSD, The Royal Society, the Meer Wissen Initiative among others. She is a mem-

ber of the Board of Trustees for the Partnership for Observation of the Global Ocean (POGO), a steering committee member of CoastPredict, a co-lead of both EQUISEA and the Global Ocean Corps and Conveyor. She a member of the American Geophysical Union among other networks.

Affiliation: Department of Marine and Fisheries Sciences | University of Ghana | Legon-Accra | Ghana

Putting Science to Action - online

Science has contributed significantly to our understanding of societal evolution. The need for impactful science has been amplified in the 21st century, when the world is confronted with complex socioenvironmental challenges that call for urgent lasting solutions. Yet, several scientific research findings remain unused in decision-making to inform societal well-being. To ensure that research findings benefit society, scientists must strengthen their connections with the public. The talk will explore ways by which science can effectively contribute to addressing immediate and unforeseen societal challenges. Key thoughts for deliberation would include how to do science to impact society, success stories and approaches, going beyond the linear scientific method to make impact, output-oriented and outcomeoriented science, deep science, steps to make science impactful, actors in the science and society arena, communicating science effectively to yield results. The talk would improve our understanding on science that connects with society and set the tone for dialoguing further in the field.

Global shipping emission inventories with high spatial and temporal resolution - *online*

Huan Liu¹, Xiaotong Wang¹, Wen Yi¹

¹Tsinghua University, China ²State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China

The AIS-based shipping emission inventory has greatly improved the spatiotemporal resolution and provided several new findings of the emission characteristics. Recently, we updated our shipping emission model (SEIM) through data updating and algorithm improvement. We found that although containers accounted for the 31% of global shipping CO2 emissions in 2016, the major contributor differs among oceans. The contributions of containers exceeded 40% in waters off the Chinese coast, ro-ro ships account for notably high proportions in many European waters, and the bulk carriers contributed the most in the southern hemisphere. The global shipping CO2 emissions continued to increase from 2016 to 2018, but they decreased by 3.9% in 2019 possibly due to the freight decrease caused by the tense situation of international trade. On a daily scale, the fleet iteration can be clearly observed in the emission composition, e.g., the proportion of LNG ships and newly-built ships are both increasing.

Sea-air transfer and dispersal of harmful sea spray aerosols - on-site

Julie Dinasquet¹, Eva Ternon

¹Scripps Institution of Oceanography, USA

Hippocrates wrote (460–370 B.C.) "Taken as baths seawater is good for skin itching and prickning; it is also good under the form of vapours". But sea sprays, generally considered therapeutic, can also be harmful to coastal ecosystems and populations. Current anthropogenic activities are changing the natural balance of ocean-atmosphere interactions not only affecting aquatic biogeochemistry and climate feedback, but also increasing the risk of toxic aerosols emission. Combining state-of-the-art ocean-atmosphere simulators and in situ measurements of ambient coastal aerosols, we show compelling mechanistic evidence of effective sea-to-air transfer and aerial dispersal of opportunistic marine pathogens and phytoplanktonic toxins. These results highlight the importance to further study how exposure to harmful sea spray aerosol will change and increase in the future, in order to better predict societal (e g. food security and public health) and economic outcomes.

	First Name	Last Name	Affiliation	City	Country
1	Katye	Altieri	University Of Cape Town	Cape Town	South Africa
2	Emma	Archer	Plos Climate	Pretoria	South Africa
3	Thomas	Bell	Plymouth Marine Laboratory	Plymouth	England
4	Attang	Biyela	University of Cape Town	Cape Town	South Africa
5	Marie	Воуе	IPGP - CNRS UMR7154	Paris	France
6	Laura	Braby	Saeon- Egagasini Node	Cape Town	South Africa
7	Frauke	Bunsen	AWI, Helmholtz Centre for Polar And Marine Research	Bremerhaven	Germany
8	Jessica	Burger	University of Cape Town	Cape Town	South Africa
9	Annette	Carlson	University Of Connecticut	Groton	United States
10	Nicolette	Chang	SOCCO-CSIR	Cape Town	South Africa
11	Odile	Crabeck	Unversite De Liege	Liege	Belgium
12	Jessie	Creamean	Colorado State University	Fort Collins	United States
13	Meghan	Cronin	NOAA Pacific Marine Environmental Laboratory	Seattle	United States
14	Mercedes	De La Paz	Spanish National Research Council	Vigo	Spain
15	Inge	Deschepper	Université Laval	Québec	Canada
16	Julie	Dinasquet	Scripps Institution of Oceanography	La Jolla	United States
17	Laique Merlin	Djeutchouang	University of Cape Town	Cape Town	South Africa
18	Faith	February	University of Cape Town	Rondebosch	South Africa
19	Kirsten	Fossum	University of Galway	Galway	Ireland
20	Martí	Galí	Icm-csic	Barcelona	Spain
21	Isabelle	Giddy Nunes da Costa	CSIR	Cape Town	South Africa
22	Jessica	Gier	SOLAS	Galway	Ireland
23	Cecile	Guieu	CNRS Sorbonne University	Villefranche Sur Mer	France
24	Douglas	Hamilton	NC State University	Raleigh	United States
25	Siyabulela	Hamnca	CSIR	Cape Town	South Africa
26	Martin	Hellmich	Saint Mary's University	Halifax	Canada
27	Zakiena	Hoossen	Wits and CSIR/SOCCO	Cape Town	South Africa

	First Name	Last Name	Affiliation	City	Country
28	Mashiat	Hossain	University of Illinois	Champaign	United States
29	Shrivardhan	Hulswar	Indian Institute of Tropical Meteorology	Pune	India
30	Akinori	Ito	JAMSTEC	Yokohama	Japan
31	Warren	Joubert	South African Weather Service	Stellenbosch	South Africa
32	Anurag	Kumar	University of Cape Town	Cape Town	South Africa
33	Brett	Kuyper	University of Cape Town	Cape Town	South Africa
34	Zouhair	Lachkar	New York University Abu Dhabi	Abu Dhabi	United Arab Emirates
35	Guillaume	Le Gland	Institute of Marine Sciences - CSIC	Barcelona	Spain
36	Li	Li	MEL, XMU	Xiamen	China
37	Joan	Llort	Barcelona Supercomputing Center	Barcelona	Spain
38	Rémi	Losno	Ірдр	Paris	France
39	Jamie	Males	Public Library of Science	Cambridge	England
40	Christa	Marandino	GEOMAR	Kiel	Germany
41	Tanya	Marshall	University of Cape Town	Cape Town	South Africa
42	Thulwaneng	Mashifane	Socco-csir & Maris-UCT	Cape Town	South Africa
43	Lisa	Miller	Institute of Ocean Sciences/ Fisheries and Oceans Canada	Sidney	Canada
44	Tumelo	Moalusi	University of Witwatersrand	Cape Town	South Africa
45	Tebatso Martin	Moloto	North-West University	Polokwane	South Africa
46	Precious	Mongwe	CSIR	Cape Town	South Africa
47	Pedro	Monteiro	CSIR	Cape Town	South Africa
48	Sifiso	Mpapane	Socco/csir	Cape Town	South Africa
49	Tanvi	Nagwekar	AWI Helmholtz Centre for Polar and Marine Research	Bremerhaven	Germany
50	Annicia	Naicker	CSIR - SOCCO	Cape Town	South Africa
51	Sarah	Nicholson	CSIR-SOCCO	Cape Town	South Africa
52	Jurgita	Ovadnevaite	University of Galway	Galway	Ireland

	First Name	Last Name	Affiliation	City	Country
53	Maija	Peltola	Institute for Atmospheric and Earth System Research, University of Helsinki Laboratoire Des Sciences De	Helsinki	Finland
54	Morgane	Perron	L'environnement Marin	Plouzané	France
55	Siwatt	Pongpiachan	School of Social and Environmental Development, National Institute of Development Administration	Huamark, Bangkapi	Thailand
56	Moagabo	Ragoasha	University of Cape Town	Cape Town	South Africa
57	Thapelo	Ramalepe	Socco/csir	Cape Town	South Africa
58	Mishka	Rawatlal	University of Cape Town	Cape Town	South Africa
59	Raquel	Renó de Oliveira	Universidade do Estado do Rio de Janeiro	Rio De Janeiro	Brazil
60	Philippa	Rickard	Heriot-watt University	Riccarton	United Kingdom
61	Mathieu	Rouault	Nansen Tutu Center, Dept of Oceanography, University of Cape Town	Fish Hoek	South Africa
62	Lillina	Ruiters	UCT/SOCCO-CSIR	Cape Town	South Africa
63	Thomas	Ryan-keogh	SOCCO-CSIR	Cape Town	South Africa
64	Karine	Sellegri	LaMP-CNRS	Clermont- Ferrand	France
65	Liisa	Shangheta	University of Cape Town	Cape Town	South Africa
66	Garima	Shukla	CSIR - National Institute of Oceanography	Panaji	India
67	Rafel	Simó	Institut De Ciencies Del Mar, ICM- CSIC	Barcelona	Spain
68	Arvind	Singh	Physical Research Laboratory, Ahmedabad	Ahmedabad	India
69	Asmita	Singh	Stellenbosch University and SOCCO, CSIR	Pretoria	South Africa
70	Miranda	Sitofile	Council For Scientific and Industrial Research	Cape Town	South Africa
71	Tasha	Smith	Socco, CSIR	Cape Town	South Africa
72	Alexander	Soloviev	Nsu	Dania Beach	United States
73	Nadja	Steiner	Fisheries and Oceans Canada	Sidney	Canada
74	Sandy	Thomalla	Southern Ocean Carbon-Climate Observatory	Cape Town	South Africa

	First Name	Last Name	Affiliation	City	Country
75	Jennie	Thomas	IGE/CNRS	Grenoble	France
76	Jerry	Tjiputra	Norce	Bergen	Norway
77	Tesha	Toolsee	University Of Cape Town	Cape Town	South Africa
78	Erik	van Doorn	Kiel University / GEOMAR Helmholtz Centre for Ocean Research Kiel	Kiel	Germany
79	Natasha	Van Horsten	University Of Cape Town	Cape Town	South Africa
80	Manuela	van Pinxteren	TROPOS	Leipzig	Germany
81	Breanna	Vanderplow	Nova Southeastern University	Fort Lauderdale	United States
82	Marcello	Vichi	University of Cape Town	Rondebosch	South Africa
83	Charel	Wohl	Institut De Ciències Del Mar (icm) - Csic	Barcelona	Spain
84	Sive	Xokashe	University of Cape Town	Cape Town	South Africa
85	Li	Zhou	GEOMAR Helmholtz Centre for Ocean Research Kiel	Kiel	Germany
86	Paul	Zieger	Stockholm University	Stockholm	Sweden

SOUTH AFRICA | 2022

Participants list - online

	First Name	Last Name	Affiliation	City	Country
1	Sneha	Aggarwal	Stockholm University	Stockholm	Sweden
2	Mohamed	Ahmed	University of Victoria / Esri Canada	Calgary	Canada
3	Samuel	Akande	Federal University of Technology Akure	Akure	Nigeria
4	Sarah	Albernhe	Cls	Toulouse	France
5	Damian Leonardo	Arévalo-Martínez	Radboud University	Nijmegen	Netherlands
6	Andrea	Baccarini	Epfl	Lausanne	Switzerland
7	Theresa	Barthelmeß	GEOMAR Helmholtz Centre for Ocean Research Kiel	Kiel	Germany
8	Elisa	Bergas-Massó	Barcelona Supercomputing Center	Barcelona	Spain
9	Yishu	Bian	Fujian Provincial Meteorological Bureau	Fuzhou	China
10	Tonya	Burgers	University of Manitoba	Winnipeg	Canada
11	Lucia	Cancelada	University of California San Diego	La Jolla	United States
12	Fernanda	Casagrande	National Insitute For Space Research	Soledade	Brazil
13	Guillaume	Chamba	CNRS LaMP	Clermont Ferrand	France
14	XiaoDong	Chen	University of Science And Technology of China	Hefei City	China
15	Dihui	Chen	Ocean University of China	Qingdao	China
16	Luo	Chenghan	Xiamen University of China	Xiamen	China
17	Marcela	Cornejo-d'ottone	Pontificia Universidad Católica De Valparaíso	Valparaiso	Chile
18	Wenxin	Cui	Ocean University of China	Sanya	China
19	Adeola Michael	Dahunsi	University of Abomey-calavi, Benin Republic	Cotonou	Benin
20	Minhan	Dai	Xiamen University	Xiamen	China
21	Marcelo	Dourado	Cem/ufpr	Curitiba	Brazil
22	Erin	Dunne	Csiro Climate Science Centre	Melbourne	Australia
23	Leonie	Esters	University Bonn	Bonn	Germany
24	Susanne	Fietz	Stellenbosch	Stellenbosch	South Africa
25	wylee	Fitz-Gerald	University of British Columbia	Surrey	Canada
26	Raquel	Flynn	University of Cape Town	Cape Town	South Africa

Contacts

	First Name	Last Name	Affiliation	City	Country
27	Yating	Gao	Ocean University of China	Qingdao	China
28	Chengcheng	Gao	Xiamen University	Xiamen	China
29	Huiwang	Gao	Ocean University of China	Qingdao	China
30	Santiago	Gasso	University of Maryland / NASA	Greenbelt	United States
31	Weihua	Gu	University of Science and Technology of China	Hefei	China
32	Xiuwen	Guo	Ocean University of China	Qingdao	China
33	Mansi	Gupta	Physical Research Laboratory	Ahmedabad	India
34	Neil	Harris	Cranfield University	Bedford	England
35	Judith	Hauck	AWI Helmholtz Centre for Polar- and Marine Research	Bremerhaven	Germany
36	Hakase	Havashida	Japan Agency For Marine-earth Science And Technology	Yokohama	Japan
37	Frances	Hopkins	Plymouth Marine Laboratory	Plymouth	United Kingdom
38	Yoko	lwamoto	Hiroshima University	Higashi Hiroshima	Japan
39	Rebecca	Jackson	Csiro	Canberra	Australia
40	Bernd	Jähne	Heidelberg University	Heidelberg	Germany
41	Bei	Jiang	University of Science and Technology of China	Anhui	China
42	Sohiko	Kameyama	Hokkaido University	Sapporo	Japan
43	Maria	Kanakidou	University of Bremen - University of Crete	Heraklion	Greece
44	Yugo	Kanaya	Japan Agency for Marine-Earth Science And Technology (jamstec)	Yokohama	Japan
45	Kaori	Kawana	Jamstec	Yokohama	Japan
			State University of New York, College of Environmental Science		
46	David	Kieber	and Forestry	Manlius	United States
47	Donghwi	Kim	and Technology	Geoje-si	South Korea
48	Ja-Myung	Kim	Pohang University of Science and Technology	Pohang	South Korea
49	Arne	Koertzinger	GEOMAR Helmholtz Centre for Ocean Research	Kiel	Germany

Participants list - online

	First Name	Last Name	Affiliation	City	Country
50	Ashwini	Kumar	Csir-national Institute of Oceanography, Goa Japan Agency for Marine-Earth	Panaji	India
51	Minako	Kurisu	Science and Technology	Yokosuka	Japan
52	Rémy	Lapere	Cnrs/ige	Grenoble	France
53	Mohd Talib	Latif	Universiti Kebangsaan Malaysia	Bangi	Malaysia
54	Cliff	Law	NIWA	Wellington	New Zealand
55	Anisbel	Leon Marcos	Leibniz Institute for Tropospheric Research	Leipzig	Germany
56	Huan	Liu	Tsinghua University	Beijing	China
57	Yaohua	Luo	Xiamen University	Xiamen	China
58	Edem	Mahu	University of Ghana	Legon	Ghana
59	Marc	Mallet	University of Tasmania	Hobart	Australia
60	George	Manville	University of Exeter	Plymouth	United Kingdom
61	Nadine	Mengis	GEOMAR Helmholtz Centre for Ocean Research Kiel	Kiel	Germany
62	Andrea	Milinković	Ruđer Bošković Institute	Zagreb	Croatia
63	Bill	Miller	University of Georgia	Athens	United States
64	Yuzo	Miyazaki	Hokkaido University	Sapporo	Japan
65	Noraini	Mohyeddin	University of Malaya	Kuala Lumpur	Malaysia
66	Regiane	Moura	National Institute for Space Research	Soledade	Brazil
67	Jun	Nishioka	Hokkaido University	Sapporo	Japan
68	Prema Piyusha	Panda	School of Earth, Ocean and Atmospheric Sciences, Goa University	Goa	India
69	Leanne	Powers	Suny Esf	Syracuse	United States
70	Daniel Tetter	n Quaye	Atlantic Technical University	Mindelo	Cabo Verde
71	Margarita	Reza	University of Colorado Boulder	Boulder	United States
72	Esther	Rickert	Solas Ipo	Kiel	Germany
73	Manon	Rocco	Lacy	Saint Denis	Réunion
74	Anna	Rutgersson	Uppsala University	Uppsala	Sweden
75	Thaís	Sarmento	Inpe	Niterói	Brazil
76	Zongbo	Shi	University Of Birmingham	Birmingham	United Kingdom

Contacts

	First Name	Last Name	Affiliation	City	Country
77	Rachel	Stanley	Wellesley College	Wellesley	United States
78	Hisahiro	Takashima	Fukuoka University	Fukuoka	Japan
79	Fumikazu	Taketani	Japan Agency for Marine-Earth Science and Technology	Yokohama	Japan
80	Mingjin	Tang	Guangzhou Institute of Geochemistry, Chinese Academy of Sciences	Guangzhou	China
81	Royston	Uning	Environmental Studies	Tsukuba	Japan
82	Haonan	Wang	ocean university of China	Qingdao	China
83 84	Zhixuan Bingbing	Wang Wang	Xiamen university Xiamen University	Xiamen Xiamen	China China
85	Megan	Willis	Colorado State University	Fort Collins	United States
86	Adelaide	Wink	University Of Galway	Galway	Ireland
87	Holly	Winton	Victoria University of Wellington	Wellington	New Zealand
88	Matthew	Woodhouse	CSIRO	Aspendale	Australia
89	Oliver	Wurl	University of Oldenburg, Insitute for Chemistry and Biology of the Marine Environment	Wilhelmshaven	Germany
90	Gao Bin	Xu	Ocean University of China	Qingdao	China
91	Wu	Xudong	University of Science and Technology of China	Hefei	China
92	Lei	Xue	State University of New York, College of Environmental Science and Forestry	Syracuse	United States
93	Mingxi	Yang	Plymouth Marine Laboratory	Plymouth	United Kingdom
94	Guiling	Zhang	Ocean University of China	Qingdao	China
95	Mei	Zheng	Peking University	Beijing	China
96	Julika	Zinke	Stockholm University	Stockholm	Sweden

SOUTH AFRICA | 2022

www.solas-int.org