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This study provides value for the metagenomics �eld by providing an under-
standing of the nature of damage to bacterial DNA in FFPE samples and on the 
related impact on analyses. 

Characterise the damage to FFPE-induced damage and its impact on downstream 

analyses.

Develop a method to repair damage in both bacterial and mammalian DNA to im-

prove the �delity of analyses. 
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STRATEGY: 

Formalin-�xed, para�n-embedded (FFPE) samples represent the most com-
prehensive collections of patient material in hospital pathology archives.  
With the advent of high throughput sequencing, FFPE material represents a 
valuable trove of source material for genomic analysis. However, the e�ects 
of the FFPE process on DNA must be taken into account for reliable analysis. 

BACKGROUND: 

DNA damages is known to be in the form of: (i) Cross-links (DNA-DNA, 
Protein-DNA), (ii) depurination, leading to (iii) DNA fragmentation and (iv) se-
quence alterations (chimeras, SNPs).

These negatively a�ect sequencing outputs, by reducing: a) the sequencing 
depth, b) sequencing uniformity, c) read length, d) ratio of reads passing 
quality �ltering; and increasing a) the number of chimeric reads. b) FFPE de-
rived single nucleotide polymorphisms (SNPs), translocations, and insertions 
and deletions (indels) .

To address FFPE induced DNA damage, the Base Excision Repair pathway, 
represents a unique opportunity. This pathway is the main pathway for repair 
of lesions, such as damaged bases, AP sites and ss-breaks.

CONCLUSION: Furthermore, given the paucity of published information on mammalian FFPE 
DNA repair, and none on bacterial repair, the strategy devised here utilising bac-
terial DNA as an optimisation model, provides all users of FFPE samples (both 
human and bacterial) with a thoroughly-characterised methodology for DNA 
repair.
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1. Optimising formalin crosslinks removal
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2. Repair of FFPE DNA 

A new decrosslinking strategy [Chaotropic  Salt Bu�er 
at 80oC for 1h] (cyan) was compared to a reference pro-
tocol [90 oC x 1 h with QIAGEN ATL bu�er] (grey). 

(A) Yield: absolute quantity of ampli�able DNA or a 500 bp 
DNA fragment from 106 genomes (n=6 ).  
(B) Sequence quality: HRM plot – ΔTm of tests plotted against 
the Tm of NF sample (orange). Average ΔTm from NF shown 

The new strategy improves FFPE DNA seqeunce quality. 
The Tm of DNA fragments ampli�ed were closer to that of 
paired-NF DNA, with  [ΔTm (%)] = 2.82 (not signi�cant) 
versus 3.02 (p < 0.05) for the reference protocol.
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v. Number of chimeras 
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vi. SNPs per layer of coverage
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A) Trial of glycosylases mixes

The best performance in all cases was observed 
in the BER mix with FPG and Endo VIII.

WGS. analysis.  6 replicates treated with each mix 
were pooled (n = ∑6) and analysed by WGS. Data vali-
dated that all mixes improved the sequence (i) cover-
age and number of reads and QP reads and reduced 
the amount of SNPs (iii). 

Outputs of Bioanalyser and WGS for bacterial FFPE 

DNA exposed to the combined treatment (cyan), 

labelled as New Protocol, (Σn = 6), compared to 

paired-samples decrosslinked with reference 

(QIAGEN) protocol and unrepaired (grey), (Σn = 6), 

and paired Non-Fixed samples (orange), (n = Σ3). 

B) Validating the combined protocol 

Altogether, the results shown here  consistently 
indicate an improvement in the sequence integ-
rity, readability and quality of readable bacterial 

[bp]

Reconstitution of the BER system for repair of 
FFPE DNA
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