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Abstract 

Inspection of structures comprising composite materials is a time-consuming and expensive, yet 

necessary process. Acoustic methods are common ground in non-destructive testing, utilizing wave 

reflection and transmission properties to localize and identify defects. In this work, a hybrid eXtended-

Wave Finite Element method is employed to study those properties on a damaged waveguide. The 

implementation is discussed and numerical results are provided. The proposed model’s advantage is the 

reduction of computational cost for both the vibrational and the remeshing aspect. 
 

1. Introduction 

Usage of composite materials has expanded in recent years, especially in the aerospace and 

automotive industry. Costs for inspection however, have been estimated to reach 27% of the 

structure’s life-cycle [1]; the field of Structural Health Monitoring (SHM) has thus become relevant, 

aiming at developing methods for Non-Destructive Testing of structures to detect and assess 

operation-induced defects. Towards that goal, a variety of methods have been conceived and 

implemented [2]; among these, the vibration-based ones are dominating the field [3], [4]. This class 

of methods consists of emitting a vibration that travels through the structure and interacts with flaws; 

receiving the altered signal yields information about the state of the structure or the existence and 

characteristics of any flaws [5]. Implementing knowledge of the underlying physics towards 

modelling the governing phenomena contributes to further understanding thereof. Computational 

methods—predominantly finite elements—are widely implemented in this context. Demand for 

higher efficiency had led to the development of more specialized tools, such as the Wave Finite 

Element (WFE) and the eXtended Finite Element Method (XFEM). 

The Wave Finite Element method has been well-established as means of analysing the vibrational 

behaviour of a structure. It is most suited to accommodate for guided waves in long structures and 

takes advantage of a structure’s periodicity, vastly reducing the computational cost, especially in 

higher frequencies. The method was developed by Zhong and Williams [6]. In  [7] the reflection and 

transmission of waves between waveguides of different directions, joined by a coupling element is 

investigated and validated. In [8] the Diffusion Matrix prediction Model is further elaborated upon and 

the reflection, transmission and intermodal conversion of waves through notched waveguides, is 
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investigated. Further works examining and validating different configurations are Renno and Mace 

[9], Mitrou et al. [10], whereas several extensions exist, such as [11] which examines nonlinear 

behaviour along with the generation of harmonics. 

XFEM was initially introduced in a fracture mechanics context, to improve convergence properties of 

finite element solutions for cracks by incorporating a priori knowledge of the solution behaviour, 

through a Partition of Unity framework. The introduction of a Heaviside type enrichment for nodes 

whose support is cut by the crack, allowed free separation, leading to a complete mesh-free 

representation of cracks. The XFEM’s mesh-free capabilities wire first implemented in a SHM 

context in Rabinovich et al. [12], [13] taking advantage of the mesh-free representation of cracks to 

eliminate need for remeshing at each iteration of the forward problem. Several papers followed. [12]–

[16] implemented Genetic Algorithms to detect and identify one or multiple flaws. In [17] and [18] 

optimization strategies involving identification at multiple scales are adopted. Nanthakumar et al. 

[19], [20] solved the coupled equations to identify cracks in piezoelectric materials. Yan et al. [21], 

Sun et al. [22] used Bayesian inference methods in a stochastic approach taking into account sensor 

noise. 

This paper investigates the reflection, transmission and conversion of waves through a crack. The 

WFE and XFEM are combined, aiming at reducing the computational cost for higher frequency 

vibrations, along with the need for complex meshing, re-meshing and tying approaches such as the 

mortar method implemented in i.e. [8]. In Section 2 the formulation for the WFE and the coupling 

element problem are given. Numerical results and discussion thereof are presented in Section 3. 

2. The WFE and the XFEM 

2.1 The WFE 

An infinitely long domain Ω of constant section, as depicted in Figure 1, is considered. The domain 

contains a crack. The partition of the geometry into Ω1 ∪ Ω𝑐 ∪ Ω2 with bounds Γ1
𝑅 ≡ Γ𝑐

𝐿, Γ2
𝐿 ≡ Γ𝑐

𝑅 is 

possible. It holds that waves propagate uniformly through Ω ∖ Ω𝑐. 

2.1.1 1-Dimensional wave propagation in an infinite waveguide 

 
Figure 1. Waveguide partitioned in propagating and cracked substructures 

For a wave travelling inside Ω1, Ω2 the displacements may be given according to Bloch’s theorem [6]: 

𝑢(𝑥) = 𝑢0e
−ik𝑥 (1) 

Following a finite element discretization and obtaining the stiffness K and mass M matrices, along 

with the force vector, the following equation is established: 



ECCM18 - 18th European Conference on Composite Materials    

Athens, Greece, 24-28th June 2018 3 
 

Konstantinos D. Sfoungaris, Dimitrios G. Chronopoulos and Savvas P. Triantafyllou 

 

[

D𝐿𝐿 D𝐿𝑅 D𝐿𝐼
D𝑅𝐿 D𝑅𝑅 D𝑅𝐼
D𝐼𝐿 D𝐼𝑅 D𝑅𝑅

] [

q𝐿
q𝑅
q𝐼
] = [

f𝐿
f𝑅
0

] (2) 

With D= (1+i𝜂𝜔) K+𝜔2M the dynamic stiffness matrix, where 𝜂 denotes the damping coefficient 

and 𝜔 the angular frequency. It is then possible to write: 

T [
q𝐿
f𝐿
] = 𝜆 [

q𝑅
f𝑅
] (3) 

with T the transfer matrix and 𝜆 =  e−ik𝑥. The transfer matrix is shown to be symplectic [6], [7] and, 

as such, eigenvalues appear in reciprocal pairs, denoting left and right-travelling waves: 𝜆𝑗
+ =

1/ 𝜆𝑗+1
− . A positive travelling wavemode fulfils the equation: 

|𝜆𝑗
+| ≤ 1 

𝔑𝔢{i𝜔f𝐿
Tq𝐿} < 0,  if  |𝜆𝑗

+| = 1 
(4) 

Furthermore, the eigenvectors of Eq. 3 can be partitioned into left-travelling and right-travelling and 

displacement and force part.  This is written as: 

Φ𝑗 = [{
Φ𝑞
Φ𝑓
}
+

{
Φ𝑞
Φ𝑓
}
−

] (5) 

Last, by obtaining the left eigenvectors it is possible to make the following normalization: 

𝚿𝚽 = I (6) 

with I the unit matrix. 

2.1.2. The coupling element problem 

Considering the stiffness matrix of the coupling element Ω𝑐 and following a Guyan reduction on 𝐿, 𝑅 

[7], one obtains: 

[
D𝐿𝐿 D𝐿𝑅
D𝑅𝐿 D𝑅𝑅

] [
q𝐿
q𝑅
]=[
f𝐿
f𝑅
] 

(7) 

It is possible to expand the forces and displacements cast on Γ𝐿
(𝑐), Γ𝑅

(𝑐) from Γ𝑅
(1), Γ𝐿

(2)  as the sum 

of series of eigenmodes such that: 

qΓ𝑖 = ∑Φ𝑞𝑗
(𝑖)

𝑗

Q𝑗
(𝑖)

 (8) 

with Q𝑗
(𝑖)

 the amplitude of jth mode. Subsequently displacement and force vectors can be written in 

matrix form as: 

q=[Φ𝑞
+ Φ𝑞

−][Q+ Q−]T (9) 
f=[Φ𝑓

+ Φ𝑓
−][Q+ Q−]T 

The eigenvectors are further regrouped as: 

Φ̃𝑘
±
= [

Φ𝑘
±(1)

0

0 Φ𝑘
±(2)

] (10) 

where k stands for q or f , for displacement or force part of the eigenvector, as displayed in Eq. 5. Also 

Φ𝑘
±(𝑖)

 expresses the positive/negative travelling wavemode of substructure 𝑖 = 1,2. Since the 

substructures are opposite in the sense that a positive-travelling wave in Ω1 is negative-travelling in 

Ω2, the two are connected via the relation Φ𝑘
±(1)

= RΦ𝑘
±(2)

 with R a rotation matrix setting 𝑥(1) =
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−𝑥(2), 𝑦(1) = 𝑦(2). Then, substituting Equations 9, 10, Eq. 7 for the coupling element can be 

rewritten as: 

[D Φ̃𝑞
− − Φ̃𝑓

− D Φ̃𝑞
+ − Φ̃𝑓

+]

{
 
 

 
 Q

+(1)

Q+(2)

Q−(1)

Q−(2)}
 
 

 
 

= 0 

(11) 

 

{
Q−(1)

Q−(2)
} = s {

Q+(1)

Q+(2)
} (12) 

s=[D Φ̃𝑞
− − Φ̃𝑓

−]
−1
[D Φ̃𝑞

+ − Φ̃𝑓
+] (13) 

The scattering matrix s is defined by Eq. 12 which, combined with Eq. 11 reaches the form of Eq. 13. 

As a reduced basis of eigenvectors is retained in general, pseudo-inversion is employed in Eq. 13.  

2.2 The XFEM 

Considering a domain Ω bounded by Γ =  Γ𝑢 ∪ Γ𝑡, with Γ𝑢 ∩ Γ𝑡 = ∅, containing a crack Γ𝑐 the 

equations of equilibrium read: 

divσ − 𝜌ü = 0  

(14) 

σ = C:ε  
ε=∇𝑠𝑦𝑚u  

u=u0 on Γ𝑢  

σ∙n=t on Γ𝑡  

σ∙n=0 on Γ𝑐  

In Eq. 14, σ describes the Cauchy stress tensor, ε the strain tensor, u the displacement field, C is 

Hooke’s tensor and n the outward normal vector. Following a finite element discretisation, the 

displacement field can be expressed as: 

u(𝑥) =∑𝑁𝑖(𝑥)u𝑖
𝑖∈ℐ

+ ∑𝑁𝑖(𝑥)𝐻𝑖b𝑖
𝑖∈𝒥

+ ∑𝑁𝑖(𝑥)

𝑖∈𝒦

∑𝐹𝑖𝑘a𝑖𝑘

𝑛𝑘

𝑘=1

 

(15) 

where 𝑁𝑖 are the finite element shape functions, with 𝑁𝑖(𝑥𝑗) = 1 𝑖𝑓 𝑖 = 𝑗, 0 𝑒𝑙𝑠𝑒 the Kronecker delta 

property and ∑ 𝑁𝑖(𝑥) = 1 ∀𝑥 ∈ Ω𝑖∈ℐ  the Partition of Unity property.  The set ℐ represents all the 

nodes in Ω. The set 𝒥 represents the nodes whose support is cut by the crack, which are enriched by a 

Heaviside type function. The set 𝒦 contains all the nodes whose behaviour is assumed to be 

influenced from the near-tip behaviour, and are thus enriched with the function kernel in Equation 

16b; 𝑛𝑘 is the number of enrichment terms employed. For most cases, including the present, four 

functions are retained. The nodes 𝒦 are chosen so that they lie sufficiently close to the crack tip. 

𝐻𝑖 = [𝐻(𝜙(𝑥)) − 𝐻(𝜙(𝑥𝑖))] (16a) 

𝐹 = { √𝑟𝑐𝑜𝑠 (
𝜃

2
) , √𝑟𝑠𝑖𝑛 (

𝜃

2
) , √𝑟𝑐𝑜𝑠 (

𝜃

2
) 𝑠𝑖𝑛 (𝜃), √𝑟𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (𝜃)} (16b) 

and 𝐹𝑖 = 𝐹(𝑥) − 𝐹(𝑥𝑖). The crack is represented by the level set functions. Those are defined as: 

𝜙(𝑥) = min𝑥𝑐∈Γ𝑐  (‖𝑥 − 𝑥𝑐‖)sign(𝑛 ⋅ (𝑥 − 𝑥𝑐)) (17) 
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𝜓(𝑥) is a signed distance function normal to 𝜙(𝑥) such that 𝜓(𝑥) = 0 at the crack front  (18) 

Then 𝑟, 𝜃 can be expressed as: 

𝑟 = √𝜙2 +𝜓2 
(19) 

𝜃 = arctan (
𝜙

𝜓
) 

 

3. Wave Reflection and Transmission through a cracked waveguide 

A thin aluminium bar of infinite length is considered. The material is aluminium, the width is 

H=15mm and the thickness t=2mm. A plane stress assumption is used and only the in plane motion 

and stress are taken into account. The crack, of length a0 runs through the thickness and is located 

mid-width, inclined by an angle 𝛼. The geometry can be broken down as in Figure 1. Following the 

Equations 1-6 a set of waves is produced for a frequency span of 𝑓 =  103 ∼ 105 𝐻𝑧. Two 

propagating wave modes are generated, longitudinal and bending. The dispersion curve is displayed 

in Figure 1. Comparing the wavenumbers to the analytical relations for an Euler-Bernoulli beam, 

good agreement is shown at lower frequencies. 

 

Figure 2. Dispersion curves for bending (blue) and membrane (red) wavemode. 

Lines denote: (—) WFE, (‧‧‧) Euler-Bernoulli analytic relations. 

Regarding the wave reflection and transmission, observing at Figures 3, 4, the following remarks can 

be made about the crack-wave interaction.  

First, the waveguide responds differently under different frequency excitations. In graphs (a) and (c) 

the reflection and transmission coefficients respectively for a bending wave are depicted; in (f) and (h) 

respective for membrane. For lower frequencies, the waves do not interact with the crack. As the 

frequency increases, a bigger proportion of a given wave’s energy is reflected. This can be attributed 

to the need for the wavelength to be pertinent to the defect size. In general, the shorter the wave 

length, the greater the resolution achieved. Furthermore, in Fig. 3a it is shown that the reflection 

coefficient is maximized at 50000 Hz, for larger cracks and regresses for higher frequencies. This is 

due to waves reaching an optimal resonance frequency; for higher frequencies, waves of smaller 

length may bypass or be converted at the flaw. 
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Figure 3. Reflection-Transmission Coefficients againist crack length for selected frequencies. 

Different angles are represented with lines: continuous (—) 0°, dashed (---) 45°, dotted (‧‧‧) 90°. 
 

 

 
Figure 3. Reflection-Transmission Coefficients againist crack angle for selected frequencies. 

Different crack sizes are represented with lines: continuous (—) H/3, dashed (---) H/4, dotted (‧‧‧) 

H/5. 
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4. Conclusions 

The reflection and transmission of waves on a cracked waveguide was investigated by combining the 

WFE for the modelling of propagating waves and the XFEM for modelling the crack. Very little 

engagement was required, both computationally and with respect to the operator, as XFEM facilitates 

the crack parametrization and eliminates the need for mesh tying operations is eliminated, as the need 

for complicated mesh strategies due to defect geometry are also eliminated, thus leaving nothing to 

prevent substructure-waveguide meshes conforming.   
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