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Abstract 

This work presents the geometrically nonlinear free and forced vibration analysis of a simply 

supported sandwich plate with a soft viscoelastic core. Damping is included by modelling the 

viscoelastic core as a Voigt-Kelvin solid. The nonlinearity is included in terms of von Karman strains 

and Reddy’s third order shear deformation theory is used to model the deformations. Governing 

equations are obtained by Lagrange’s formulation. A combination of Homotopy perturbation method 

with Struble’s technique is used to solve the strongly nonlinear system for free and forced vibrations 

for a point load. The variations of nonlinear amplitude and phase difference with forcing frequency are 

obtained and the influence of layer thickness, length to thickness ratio, applied force and the damping 

parameter on the damped response is studied.  

 

 

1. Introduction 

 

Sandwich composite panels are widely used in transportation vehicle components and various other 

applications to achieve high strength to weight ratios. These components are commonly subjected to 

vibratory motion and also generate undesirable noise. Damping these vibrations and reducing the noise 

levels is a major goal in the design of these components. Using a soft viscoelastic polymer core  in a 

sandwich construction provides a passive means to control the vibrations. The viscoelastic polymer 

provides a constrained layer damping (CLD) by inducing high shear strain in the layer upon flexural 

motion. The difficulty in modeling the response of such structures arises from the geometrical 

nonlinearity of the large amplitude vibrations and also the frequency dependence of the stiffness. The 

stress and strain oscillations in viscoelastic materials have a phase difference. This phase difference 

depends on the amount of damping or the rate of energy dissipation. One commonly used approach is 

the complex modulus method to account for damping and stiffness. In this work, the viscoelastic 

behavior of the material is modelled using Voigt-Kelvin spring damper system. The third order shear 

deformation theory (TSDT)  is used to model the plate deflections and the Lagrangian formulation is 

used to derive the nonlinear equations of motion with Rayleigh's dissipation term. The governing 

equations are solved using the homotopy perturbation method (HPM), which is more effective and 

accurate than the traditional perturbation methods in tackling nonlinear problems with very large 

nonlinearity. The general Struble's technique is combined with HPM to handle the strongly nonlinear 

differential systems with strong damping effect. The nonlinear response of the system can be  

examined in terms of the amplitude-frequency and phase-frequency plots. The influence of the 

geometry, damping and the forcing frequency on the nonlinear response is examined in detail. 
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2. Kinematic formulation and constitutive behavior 

 

2.1.  Geometrical configuration and material properties 

 

A square sandwich plate with in plane dimension a and total thickness h as shown in Fig. 1 is 

considered for the study. The face sheets on top and bottom are cross ply laminates with 0 and 90 

degrees orientation for bidirectional strength and the core is a homogeneous isotropic viscoelastic 

layer for damping. The properties for the core and face sheet materials are given in Table 1. 

 

 
 

Figure 1. Sandwich plate with core and face sheet configuration.  

 

 

                                                      Table 1. Material properties 

 

 

              Face sheet                                                        Core 

 

            LE 139 GPa, TE 9.86 GPa                                LE 1.794 MPa 

           LTG TTG 5.24 GPa                                             ρ = 968.1 Kg/ 3m    

            ρ = 1590 Kg/ 3m                                                       ν = 0.3 

            ν = 0.3 

 
 

2.2.  Kinematic model 

 

The deformations of the plate are assumed according to Reddy's third order shear deformation 

theory[1]. The displacement fields for the equivalent single layer are cubic functions of z as follows: 

 

)(
3

4
2

3

0
x

w

h

z
zuu xx




   

)(
3

4
2

3

0
y

w

h

z
zvv yy




   

                                   0ww                                                                                             (1) 

 

The nonlinear strains associated with the displacement fields can be computed using von Karman's 

reduced nonlinear strain-displacement relations[1], given by: 
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In plane strains=
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Transverse strains=
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2.3  Voigt-Kelvin model for viscoelastic behaviour 

 

Even though the ultimate concern here is with harmonic motions, the complex moduli approach is not 

a very convenient way to handle damping in a non-linear system. The method employed here, which is 

somewhat analogous to the complex moduli approach, is to assume that the core behaves as a Kelvin 

Voigt solid, whose stress strain relationship is given by: 


  EE    and   


  GG                                              (3) 

where   is a normal strain,   a shear strain, and E'', G'' are viscoelastic material loss parameters. A 

relationship between the complex stiffness values and kelvin parameters is desirable. This is readily 

achieved, as the following discussion shows[2]. Let the complex stiffness values for the isotropic 

viscoelastic layer are 21 iEEE   and 21 iGGG  . It can be established that, for harmonic 

motion of frequency ω, E  = 1E  and E   = 2E  / ω and the analogous relations for shear behavior are, 

G  = 1G  and G   = 2G  / ω. 

 

2.4  Constitutive relations 
 

Using the Voigt-Kelvin modelling, the stress strain relationship can be given as: 
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3. Governing equations 

 

The governing equations for the dynamic system are derived as Lagrangian equations of 

motion including the dissipative terms: 
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Where ~  is the Rayleigh's dissipation function. 

 
3.1. Boundary conditions 

 

Using Navier’s solution[1] approach, the general boundary conditions for a simply supported plate in 

third order shear deformation theory obtained from a virtual work principle approach are: 

                                    0u (x, 0, t)=0, x (x, 0, t)=0, 0u (x, b, t)=0, x (x, b, t)=0 

                                    0v (0, y, t)=0, y (0, y, t)=0, 0v (a, y, t)=0, y (a, y, t)=0 

0w (x, 0, t)=0, 0w (x, b, t)=0, 0w (0, y, t)=0, 0w (a, y, t)=0                                (6) 

    xxN (0, y, t)=0, xxN (a, y, t)=0, yyN (x, 0, t)=0, yyN (x, b, t)=0 

        xxM (0, y, t)=0, xxM (a, y, t)=0, yyM (x, 0, t)=0, yyM  (x, b, t)=0 

Using the above conditions, the displacements and curvatures can be assumed as a series of harmonic 

functions. 

 

3.2 Lagrangian equations of motion 

 

The final equations of motion obtained after substituting the assumed displacements in the Lagrangian 

expression and taking the generalized coordinate as U, V, x , y , W respectively 
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 (7) 

The equations in Eq. 7 are solved to get the U, V, x  and y  in terms of W which gives the final 

equation to be solved as  

)(2 0

32 tFWWWWW 


                                          (8) 

 

 

4. Solution 

 

The damped forced vibration problem is solved using HPM with Struble’s technique[3], which gives 

the steady state displacement solution as: 

)43(
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The displacement amplitude depends upon the forced frequency by the relations, 

 cos
4

3
)( 0

3
2 F

b
b


    and    sin2 0Fb                             (10) 

Eq. 10 gives the backbone curve in the plane (f, b) and the nonlinear phase frequency curve. 
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6. Results and discussion 

 

The effect of nonlinearity can be observed in the magnification plot which bends to one side 

depending upon the hardening or softening nature of the cubic nonlinearity introduced in terms of 

higher order strains. For 
T  , the system has 3 possible values of both amplitude and phase 

difference. But it chooses one set of values depending upon the sense of change in frequency. Fig. 2 

presents the jump phenomenon in amplitude-frequency curve and phase-frequency curve respectively. 

When the frequency is increased from relatively small value, the amplitude goes on increasing up to 

point J and the same happens to phase difference in negative direction till it attains –π/2. With a slight 

increase in frequency after J, amplitude jumps to the lower value possible for the frequency and phase 

difference jumps to the highest possible value. Similarly, while approaching 1/ l  from a 

relatively high frequency, the amplitude remains at the lowest value until T  and suddenly jumps to 

the highest amplitude after that. Phase difference in a similar manner sticks to highest magnitude and 

jumps to lowest magnitude at T The intermediate values of amplitude and corresponding phase 

difference can be regarded as unstable as the system never attains those values. 

 

 
(a)                                                                                 (b) 

 

Figure 2. Nonlinear (a)amplitude-frequency and (b)phase frequency plot with jump for a/h=50, 

fc tt / =8, η=0.75, NF 20000   

 

Fig. 3 displays the effect of variation in a/h ratio on the backbone curve. By increasing a/h ratio, the 

plate approaches the thin plate behavior and it becomes more susceptible to flexural deformation. The 

coefficients ψ, α and the forcing function 0F  are inversely proportional to 
2)/( ha  and the cubic 

stiffness γ is inversely proportional to 
4)/( ha .  So with the same load on the plate, the linear stiffness 

as well as the cubic stiffness are lower for high a/h ratio, thereby resulting in higher displacement 

amplitudes and straightening of the backbone curve. Due to decrease in nonlinearity, the bulge in 

phase-frequency curve gets reduced and approaches that of linear system. This effect is accompanied 

by the decrease  in jump frequency at higher a/h ratios. 

 

The effect of the force amplitude for the damped system is shown in Fig. 4. The backbone curves for 

concentrated force amplitudes 1000N and 2000N at the center of plates with different fc tt /  and a/h 

ratios are compared. The results show that by doubling the force amplitude, displacement amplitude 

for T   and the lowest amplitude for T   get nearly doubled for all frequencies but the other 

two amplitudes for T  become nearly equal for both force values maintaining the curvature of 

backbone curve. This indicates that force amplitude has no effect on the nonlinearity of the system, it 
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only increases the energy of system. The change in phase difference comes in terms of jump condition, 

which means by increasing the force amplitude, the system attains the jump at a higher frequency. 

 

 

 
(a)                                                                        (b) 

 

Figure 3. Comparison of nonlinear (a)amplitude-frequency and (b)phase frequency curves for 

different a/h ratios with fc tt / =8, η=0.5, NF 20000   

 

 
(a)                                                                             (b)   

 

Figure 4. Comparison of nonlinear (a)amplitude-frequency and (b)phase frequency curves for 

different force amplitudes with a/h=50, fc tt / =8, η=0.5 

 

For undamped system, the two arms of amplitude-frequency plot do not intersect each other for any 

finite frequency. But for damped systems, they intersect which gives the jump frequency. This 

intersection frequency decreases with increase in damping coefficient of the system. Because the 

resistance due to damping prevents the system from attaining a higher amplitude value. The bulge in 

the curve diminishes with increase in viscosity parameter(η). This is because by increasing the 

damping on the system, the maximum amplitude attainable at the jump point(J) decreases and the 

jump occurs at an earlier frequency. The effect of viscosity parameter on amplitude and phase 

difference is given in Fig. 5.  
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For a and h values individually taken constant, the amplitude corresponding to any frequency 

increases with increase in fc tt /  ratio. This is obvious because by increasing the proportion of core the 

overall stiffness of the plate gets reduced thereby allowing more deformation. But the important thing 

to notice is the effect on nonlinearity or the cubic stiffness. For a/h=10 i.e. in the range of thick plates, 

nonlinearity increases with increase in core proportion as seen in Fig. 6(a). But the opposite happens 

for thin plates like a/h=50 which is given in Fig. 7(a). 

 

 

 
(a)                                                                      (b)         

 

Figure 5. Comparison of nonlinear (a)amplitude-frequency and (b)phase frequency curves for 

different damping parameters with a/h=50, fc tt / =8, NF 20000   

 

 

 
(a)                                                                        (b)                            

 

Figure 6. Comparison of nonlinear (a)amplitude-frequency and (b)phase frequency curves for 

different fc tt /  ratios with a/h=10, η=0.5, NF 20000   
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(a)                                                                          (b)             

 

Figure 7. Comparison of nonlinear (a)amplitude-frequency and (b)phase frequency curves for 

different fc tt /  ratios with a/h=50, η=0.5, NF 20000   

 

The behavior of phase frequency curve under variation in fc tt /  ratio which is entirely dependent 

upon the jump frequency is presented in Fig. 5(b) and 6(b). For T   the phase values follow the 

same pattern as amplitudes having a higher value for higher fc tt /  ratio with constant plate thickness. 

But for T  , the bulges take their respective positions depending upon the jump frequency. 

 

 

7. Conclusion 

 

In this paper, only the first mode of vibration with m,n=1 of the simply supported plate is considered 

for simplicity of the solution process. The Voigt-kelvin spring damper model is used to model the 

viscoelastic behavior of the core and the stiffness and damping parameters in the model are obtained 

by developing a relationship with the complex moduli of the viscoelastic material. This kind of 

modeling can be used to produce an analysis similar to single dof systems as it effectively reduces the 

coupled set of governing equations into a single nonlinear differential equation. The problem is solved 

using HPM with struble's technique, which is very effective for nonlinear damped systems and also 

gives same results as simple HPM with zero damping. This method only gives the solution to the 

steady state response, so cannot be used for free damped vibration problems. The accuracy of the 

solution can be improved by including the neglected terms and solving the coupled set of equations 

simultaneously. A matrix solution method with HPM can be approached for solving similar problems 

with complex boundary conditions or different layer arrangements. 
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