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Abstract 

A semi analytical finite strip method was developed in present article for buckling of laminated 

composite plates with piezoelectric layers based on different plate theories. Displacement functions of 

plate were evaluated using a continuous harmonic function series in the longitudinal direction that 

satisfies the simply support boundary condition and a piecewise interpolation polynomial in the 

transverse direction. The analysis conducted based on Reddy’s third order shear deformation theory, 

first order shear deformation theory and classical laminated plate theory. So, considering the strain-

displacement relations and stress-strain relations, the standard stiffness and geometry matrices were 

evaluated using the virtual work principle. The numerical results of buckling of piezoelectric 

laminated plates based on different plate theories were presented. The effects of different electric 

conditions, length to thickness ratio and fiber orientation were investigated through the numerical 

examples. 

 

 

1. Introduction 

 

Piezoelectric materials are often used to design smart structures in industrial, medical, military and 

scientific areas. This materials have wide ranging applications that one of the essential features of 

piezoelectric materials is their ability of transformation between mechanical energy and electric 

energy. Specifically, when piezoelectric materials are deformed, electric charges are generated, and 

conversely, the application of an electric field produces mechanical deformations in the structure [1]. 

In recent years, the increasingly extended application of piezoelectric effects in smart and intelligent 

structures has led many engineers and researchers to develop more accurate and efficient analysis 

methods for predicting behaviors of piezoelectric laminated plates [2]. Several research works have 

been conducted to investigate the stability behaviours of smart composite plates. Panahandeh et al. [3] 

developed fully coupled electromechanical buckling analysis of active laminated composite thin to 

thick plates using partial hierarchical Rayleigh Ritz solution. Also they analyzed thermoelastic 

buckling and active control of thermoelastic buckling for laminated composite plates by piezoelectric 

actuator and sensor pairs for feedback [4]. Moleiro et al. [5] provided an assessment of layerwise 

mixed models using least–squares formulation for the coupled electromechanical static analysis of 

multilayered plates. The functionally graded piezoelectric material is a new type of piezoelectric 

material in which the electro-elastic properties are considered to vary in thickness direction. Recently, 

functionally graded piezoelectric structures have attracted great interest among on researchers. Chen et 
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al. [6] employed the element free Galerkin (EFG) method to analyze buckling of piezoelectric FGM 

rectangular plates subjected to non-uniformly distributed loads, heat and voltage. The stability analysis 

of plates made of FGM and subjected to electro-mechanical loading investigated by Jadhav and 

Bajoria [7]. 

 

 

2. Finite Strip Formulations 

 

The finite strip approach permits the discretization of the rectangular plates in finite longitudinal strips, 

as shown in Fig. 1. 

 

 
  

(b) (a) 
 

Figure 1. Degrees of freedom in one finite strip: a) Electrical Dofs, b) Mechanical Dofs 

 

 

The in-plane displacements u0 and v0, lateral displacement w0, rotations of the normal cross sections in 

x–z (γx) and y–z planes (γy), and 
k  is the electric potential in the kth piezoelectric layer. Therefore 

these parameters can be taken in the form 
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The displacement functions are assumed to be polynomials in the transverse direction while, in the 

longitudinal direction (for out of-plane deformation), characteristics basic functions, simply supported 

have been used. It should be noted that value of the r in above equations is equal to the number of 

longitudinal half-wavelengths throughout the plate (number of modes). 
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where bs is the width of strip. Also, in Eq. (6), Lpk(z) for p = 1, 2, 3 are the quadratic interpolation 

functions in the z direction defined as 
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The analysis conducted based on Reddy’s third order shear deformation theory (TSDT), first order 

shear deformation theory (FSDT) and classical laminated plate theory (CLPT). Displacements u, v and 

w at any point (x, y, z) of the laminate have the following relationships with the midplane 

displacements: 
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in which 
 

 

0

0 11 12

0 21 220

( ) ( )
; ; ; ; ( )

( ) ( )

x

y

w

u F z F zu x
z

w F z F zv v

y





 
           

                      
  

0
u u w γ F  (11) 

In Eq. (11),  ( )zF  for various plate theories can be defined as 
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The generalized displacements have the following linear relationships with the generalized strains: 
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in which ε, γ, E, are the bending strain, shear strain, and electric field vectors, respectively. 

The stress–strain constitutive law for the material of each layer of piezoelectric laminate, considering 

linear piezoelectricity can be given in matrix notation as  
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in which (k)
σ , (k)

τ  and (k)
D are bending stress, shear stress and the electric displacement vectors, 

respectively, that could be defined as 
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Also, 
(k)

bQ and
(k)

sQ are the plane stress reduced stiffness matrix for in-plane normal/shear and out-of-

plane shear, respectively. 
(k)

b
e and 

(k)

s
e are the bending and shear matrices of reduced piezoelectric 

coefficients, respectively.  
(k)
η  is the electric permittivity matrix, that these parameters are defined in 

Ref. [8]. 

In present study, the standard finite element procedure, based on virtual work is used to derive 

stiffness and geometric matrices. The finite element formulation can be obtained from equation 
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0σ  is the in-plane force per unit length matrix expressed as 
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in which, nx and ny are in-plane force per unit length in x and y direction and nxy is in-plane shear force 

per unit length, where V denote the volume of the strip. In addition u
G , v

G  and w
G  could be defined as 
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By substituting Eqs. (1)-(6), in Eqs. (13)-(15) and Eq. (25), and finally in Eqs. (21) and (22), the Eq. 

(20) can be rewritten 
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in which δ∆ is the virtual displacement vector and K, Kg and M are standard stiffness and geometric 

stiffness, respectively, that could be described by following equations. 
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Finally, according to satisfy the Eq. (20) for any virtual displacement vector of (δ∆)
T
, the finite strip 

buckling formulations was obtained as 

  0 gK K Δ  (29) 

where, λ and  is the critical load factor of the laminate plate. 

 

 

3. Results 

 

In the following, the stability formulations for analysis of piezoelectric laminated composite plates 

based on various plate theories extracted by the virtual work principle and using the finite strip 

method. In order to verify the proposed analysis and finite strip method, the present results are 

compared with other references. In present section a piezoelectric laminate plate with simply 

supported on four edges is considered. Each piezoelectric layer has thickness of 0.1h and other elastic 

layers have equal thickness, unless otherwise noted. The plate is modeled by ten finite strips and one 

mode (r = 1) in all cases. The numerical results of buckling of piezoelectric laminated plates exposed 

to in-plane force and strain, and electrical potential were presented. The effects of electrical 

conditions, length to thickness ratio and fiber orientation were investigated through numerical 

examples as shown in Tables 1-4 and Fig. 2. The material properties and electrical conditions are 

described in Refs. [8, 10]. It could be noted that, “Open-Circuit-C” is defined Open-circuit when inner 

electrodes are continuous and “Open-Circuit-N” is defined Open-circuit when there is no inner 

electrode. 

 

 

3.1. Buckling load under in-plane strain and electrical potential 

 

For electrical buckling, the inner surface of each PZT layer is grounded, whereas the uniform electrical 

potentials and  are applied to the outer surfaces of the two PZT layers with immovable edges (εx = 

εy = γxy = 0). In present sub–section, the critical potential and buckling load under in-plane strain were 

calculated for different aspect to thickness ratio and the results were shown in Tables 1 and 2. The 

results were compared with other references for verifying the accuracy of them. 

 

 

Table 1. Normalized uniaxial strain and electrical potential of square [p/0°/90°/90°/0°/p] laminate 

based on TSDT with Gr-Ep (E1=181GPa) and PZT-5A for elastic and piezoelectric layers, 

respectively.  

 

  
2 2

cr xcr a h     
2 2

33cr cr pd a h   

 
Close Circuit 

 
Open Circuit-N 

 
0 0 0( 0)x y xy      

a/h Present study Ref. [2]   Present study Ref. [2]   Present study Ref. [2] 

5 1.0162 0.9053  1.0603 0.9046  0.5671 0.5218 

10 1.6463 1.5797  1.8064 1.6291  0.9264 0.8906 

20 1.9713 1.9446  2.1839 2.0305  1.1206 1.1055 

100 2.1071 2.1073  2.3459 2.2123  1.2034 1.2025 
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Table 2. Normalized uniaxial buckling strain of square [p/0°/90°/90°/0°/p] laminate for “Close Circuit-

N” electrical condition (Gr-Ep (E1=181GPa) and PZT-5A). 

 

  2 2

cr xcr a h   

  Present study Ref. [8]  Present study Ref. [8]  Present study Ref. [8] 

Theory a/h 5 (0.9295)*  10 (1.5977)*  20 (1.9515)* 

TSDT  1.0162 1.0169  1.6463 1.6467  1.9713 1.9714 

FSDT  1.2488 1.2480  1.7927 1.7920  2.0229 2.0219 

CLPT  1.9457 1.9448  2.0646 2.0689  2.1215 2.1024 

* Exact 3D in Ref. [9] 

 

 

3.2. Buckling load under in-plane force and electrical potential 

 

The critical uniaxial buckling load and critical potential of simply supported square laminates based on 

Reddy’s higher order theory was compared with other references in Tables 3 and 4. the critical 

potential and buckling load under in-plane force were calculated for different aspect to thickness ratio , 

different electrical conditions and different orientation of laminates.  

As is evident the results have a good agreement with those obtained in the literature. Table 3 show that 

the piezoelectric laminate with the Close Circuit conditions has only slightly different than the 

proportional elastic solutions on critical buckling forces and but with Open Circuit conditions has 

significantly effect than the Close Circuit conditions and also elastic solutions. 

 

Table 3. Normalized buckling load of square piezoelectric laminated plates based on TSDT (Gr-Ep 

(E1=181GPa) and PZT-5A). 

 

a/h Lay-ups Method 2 3

2,xcr Gr EpN N a E h   

      
Elastic 

solution 

Close- 

Circuit 

Open- 

circuit-C 

Open- 

circuit-N 

10 [p/0°/90°/90°/0°/p] Present study 15.7004 15.7090 16.8895 17.2341 

  
Ref. [8] 15.64 15.65 16.58 17.10 

  Ref. [3] - 15.8703 16.9848 - 

 [p/45°/-45°/45°/-45°/p] Present study 18.7823 18.7896 19.8896 20.2203 

  
Ref. [8] 18.81 18.82 19.68 20.19 

       

20 [p/0°/90°/90°/0°/p] Present study 18.7576 18.7668 20.3381 20.7923 

  
Ref. [8] 18.73 18.74 20.01 20.71 

  Ref. [3] - 18.8260 20.3210 - 

 [p/45°/-45°/45°/-45°/p] Present study 22.7894 22.8019 24.3289 24.7870 

  
Ref. [8] 22.77 22.81 24.05 24.77 

       

100 [p/0°/90°/90°/0°/p] Present study 20.0442 20.0537 21.8058 22.3102 

  
Ref. [8] 20.04 20.06 21.48 22.26 

  Ref. [3] - 20.0474 21.7151 - 

 [p/45°/-45°/45°/-45°/p] Present study 24.4859 24.4951 26.2312 26.7501 

 
  Ref. [8] 24.49 24.5 25.91 26.73 
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Table 4. Critical buckling load (kN/m) and critical electrical potential (V) of 

[p/0°/90°/90°/0°/p] square laminate with a = 200mm, h = 1mm, hp1 = hp2 = 

0.25mm based on TSDT (Gr-Ep (E1=181GPa) and PZT-5). 

 Critical  buckling load (kN/m)  

Method Close Circuit Open Circuit-N 
Elastic 

solution 

Critical 

potential  

Present study 5.4154 6.6367 5.3693 68.2822 

Ref.  [10] 5.413 6.590 5.369 68.45 

Ref.  [11] 5.33 7.22 5.37 68.8 

 

 

3.3. Interaction curve of biaxial in-plane loading 

 

The effect of biaxial in-plane force on the buckling of square thick laminated piezoelectric plates is 

investigated using the finite strip method. For this purpose, the square thick piezoelectric laminated 

composite plate with simply supported edges is considered subjected to biaxial in-plane loading under 

different electric boundary conditions. The interaction curves was shown in Fig. 2 for [p/45°/-

45°/45°/-45°/p] laminate. Fig. 2 was drawn for different length to thickness ratio a/h = 10, 20 and 100. 

In all curves, the piezoelectric layers made of PZT-5A with thickness of 0.1h are located on top  and 

bottom surfaces, whereas, each elastic layers has the thickness of 0.2h and made of Graphite-Epoxy 

with (E1=181 GPa). The results show the linear behavior for all electric boundary conditions and 

length to thickness ratio. 

 

 

 
Figure 2. Interaction curve of biaxial in-plane forces loading 

[p/45°/-45°/45°/-45°/p] on square piezoelectric laminate for 

different electric boundary conditions and aspect to thickness 

ratio based on TSDT (Gr-Ep (E1=181GPa) and PZT-5A). 

 

 

 

4. Conclusions 

 

In the present study, the finite strip formulation was developed for stability analysis of piezoelectric 

symmetric cross–ply and antisymmetric angle-ply laminates based on various plate theories. The finite 
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strip procedure based on the virtual work principle was used to derive the stiffness and geometric 

matrices. The accuracy of the proposed method was verified and was in a reasonable agreement by 

comparing its numerical predictions with published data. Numerical examples show that the 

piezoelectric laminate with the Close Circuit conditions has only slightly different than the 

proportional elastic solutions on critical buckling forces but with Open Circuit conditions has 

significantly effect than the Close Circuit conditions and also elastic solutions. Also the results show 

the linear behavior for all electric boundary conditions and length to thickness ratio for biaxial loading. 
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