
ECCM18 - 18th European Conference on Composite Material 

Athens, Greece, 24-28th June 2018 1 

R. Olsson 

 

 

FIBRE LOCK-UP AND OTHER MECHANISMS AT LARGE FIBRE 

ROTATIONS, AND THEIR EFFECT ON AXIAL COMPRESSION OF 

COMPOSITES 
 

Robin Olsson
1
 

 
1
Swerea SICOMP, Box 104, SE-431 22 Mölndal, Sweden 

Email: robin.olsson@swerea.se, Web Page: http://www.swerea.se/en/sicomp 

 

 

Keywords: fibre kinking, lock-up, 3D fibre array 

 

 

Abstract 

This paper studies the sequence of fibre kinking, the fibre lock-up and the subsequent constitutive 

behaviour. The conditions governing these phenomena are discussed with focus on the conditions for 

fibre lock-up. Lower bounds for the fibre lock-up angle  and the kink band angle  are derived purely 

from geometrical conditions for 3D arrays of fibres, with the aim to define the termination of fibre 

kinking in homogenized material models for FE analysis. It is concluded that the limit of the lock-up 

angle is 90 for low fibre volume fractions, decreases to about 50 for fibre volume fractions common 

in high performance composites, and reaches zero for fully packed fibres. 

 

 

1. Introduction 

 

Fibre rotation is a key mechanism in axial compressive failure of fibre composites, which eventually 

results in “fibre kinking” [1-7]. Compressive shear failure of the fibres sometimes precedes kinking, 

particularly for stiff matrices, but this normally triggers kinking of neighbouring fibres [7]. Ultimately, 

large rotations cause fibre lock-up due to geometrical constraints or matrix strain hardening, Fig. 1. 

 

 
 

Figure 1. Failure sequence for fibre compression. 

 

A recent model for fibre kinking incorporates shear softening due to initiation and growth of shear 

micro-cracks [8-9]. The stresses resulting from friction on the crack surfaces increase linearly with the 

damage variable, and remain at a constant and non-negligible level after fully developed damage. 

Hence, these stresses should be accounted for until final fibre lock-up. 

 

The damage initiation and peak stress (“compressive strength”) typically occur at small fibre rotations, 

but the conditions and behaviour at large fibre rotations are essential for the energy absorption during 

in-plane crushing, e.g. for correct simulation of car crash events. The fibre lock-up angle is crucial, 
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as it terminates the fibre rotation process, and initiates a different constitutive behaviour, with higher 

stiffness resulting in kink band broadening, i.e. fibre kinking in the surrounding material. In FE-

simulations element deletion prior to fibre lock-up may result in severe underestimation of the energy 

consumed during crash events. 

 

The available analytical models for fibre kinking are based on a 2D micromechanics analysis, i.e. the 

fibres and matrix are considered as slabs in a layered continuum. Most analytical models have 

assumed that the fibre lock-up angle  is given by 2, where  is the kink-band angle. An 

overview of experimentally observed values of  was given in [2]. Recently, however, two analytical 

models derived explicit relations between  and . Zidek and Völlmecke [5] obtained solutions for  

substantially smaller than 2, while Skovsgaard and Myhre Jensen [6] obtained values of  slightly 

larger than 2, by noting when the strain energy exceeded the applied work for further deformation. A 

major limitation of the analytical models is the 2D analysis which disregards the 3D nature of fibres in 

the composite. Furthermore, matrix cracking and friction are neglected. 

 

The 3D nature of the micromechanics problem has been considered in some FE analyses [10-12]. The 

analysis in [10] was focused on initiation of kinking, while the studies [11-12] considered some further 

development although none of the simulations was pursued to fibre lock-up, probably due to 

computational problems at large strains. 

 

Some previous studies, e.g. [2, 7], have included in-situ 2D microscopy of the kinking process, 

including the increasing fibre rotation, kink band angle and fibre lock-up angle. A limitation of these 

studies is obviously that only the angular component in the plane of microscopy is measured, while the 

total angle may be larger. This limitation was avoided in a recent study using 3D micro-computed 

tomography of fibre kinking [13]. The study documented kink band angles  of 11-40 and fibre 

rotations  of up to 52, which is significantly larger than the angles noticed in 2D microscopy but 

still may be an underestimation of  as the specimens were scanned after unloading. 

 

The current paper derives bounds for the kink-band angle  and fibre lock-up angle  for 3D fibre 

configurations purely from geometrical considerations. These bounds may be used to determine the 

ultimate shear strain in homogenized kinking models of the type presented in [8-9]. 

 

2. Volumetric considerations 

 

The relation between the fibre lockup angle , or more generally the fibre rotation, and the kink band 

angle  may be defined from purely volumetric considerations, Fig. 2. This observation was made 

already in [1], but is re-derived here for purpose of clarity. 
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Figure 2. Definition of kinking geometry 

 

Fibres in typical fibre reinforced composites are very stiff in comparison to the matrix, and may be 

approximated as inextensible. Assuming plane strain in this case for a slab of thickness h the volumes 

V0 in the undeformed position and V1 in the deformed position at fibre lockup are then given by: 
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 0 1 cos cosV hwL V hw L      (1) 

 

Considering volumetric relations we get the following expressions: 
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(2a) 

(2b) 

 

Lock-up typically occurs at relatively large shear strains (large values of ), well beyond the elastic 

range of the matrix. In cases where the matrix deformation involves matrix shear cracking [8-9] or 

approaches an ideally plastic behaviour the material approaches the incompressible case, i.e. /2. 

 

3. Conditions for fibre lock-up 

 

3.1.  Lock-up with locking fibres in parallel planes 

 

We will consider the geometric conditions for fibre lock-up for the 2D case with layered slabs, the 3D 

case with fibres in a square array and fibres in a hexagonal array. The geometric conditions for fibre 

lock-up are the same for the 2D case (2D), the 3D square array (Sq) and the hexagonal array with a 

horizontal symmetry axis (HxH), Fig. 3. Note that the 2D case assumes an unphysical compression of 

the matrix to zero volume at fibre lock-up. 

 

 

 

2D 

d 

t 
d 

Sq 

d 

HxH 

t 
d+t 

(d+t)3/4 

d t 
 

 

- 

 

(d+t)/cos 

d 

Lock-up geometry 

V 

H 

 
 

Figure 3. Lock-up geometry and geometries for 2D, 3D Sq and 3D HxH fibre arrays. 

 

 

For all the cases in Fig. 3 the lock-up geometry is characterised by the following equations: 

 

     
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(3) 

where C is a function of the fibre volume fraction, specific for each fibre array. The fibre volume 

fraction and C= d/(d+t) for the different cases are given by: 

 

 2D: f fv d d t C v     (4) 
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(6) 

 

3.2.  Lock-up with locking fibres in intersecting planes 

 

For fibres in a hexagonal array with vertical symmetry axis (HxV) the geometry is given by Fig. 4. 

 

 
 

Figure 4. Lock-up geometry and geometry for HxV fibre array. 

 

 

The fibre volume fraction for HxV is equal to that for HxH as given by Eq. (6). The geometrical 

quantities H0 (original height of triangle) and H1 (height of triangle at fibre lock-up) are given by: 
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(7) 

 

The quantities H0 and H1 may be defined from the fibre volume fraction vf as follows: 
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(8) 

 

From Fig. 4 the condition for fibre lock-up may be defined as follows: 
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(9) 

 

3.3. Bounds for the lock-up angle and kink-band angle 

 

It is obvious that the upper limit for the fibre rotation is 90. From Eqs (3) and (9) it may be observed 

that / Hence, the lower bound for  is obtained for  =0 and the upper bound for  is 90, 

unless a value of  is given. Furthermore +Arccos(C), i.e.   Arccos(C)  . Thus, the 

following bounds may be established for  and : 
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 min min90 where Arccos C       (10) 

min0 min{90 ,45 }       (11) 

 

3.4. Predictions of the fibre lock-up angle 

 

The lower bounds for the lock-up angle as functions of fibre volume fraction for the four different 

fibre arrays have been plotted in Fig. 5, together with some maximum fibre rotation angles measured 

by use of 3D micro-CT [13]. 
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Figure 5. Lower bounds (assuming =0) for the lock-up angle  vs vf for the four fibre arrays. 

 

4. Ply stiffness after lock-up 

 

After lock-up the fibres will be in lateral contact, and the stiffness transverse to the fibres will be 

controlled by the contact of fibre cylinders. Reviews of relevant solutions are given in [14-15]. In the 

following analysis we neglect the minor stiffness contribution of the matrix between fibres after lock-

up but it could easily be included, e.g. as parallel springs in a simplified micromechanics model. 

 

4.1 Transverse stiffness with contacting fibres in parallel planes 

 

In this case each fibre will be compressed vertically between two neighbouring fibres. The case is 

identical to the diametrical compression of a cylinder between two rigid flat surfaces, which was 

solved by Föppl (1907), as described in [15]. For a unit cell of width d+t an average transverse 

pressure pT results in a radial load Nr per unit length of fibre, and a contact half-width b between the 

fibres. The resulting transverse compression r of a fibre with radial stiffness Qr is given by: 
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(12) 

 

The resulting transverse strain is obtained by dividing r with the fibre diameter d 
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      4 1 3 lnT r T rd d b p Q d t d          (13) 

 

The resulting transverse stiffness QT, Eq. (14), is obtained by dividing pT with the transverse strain T. 

The corresponding value of   for the different fibre arrays is given in Eq. (15). 
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(15) 

 

The influence of the transverse pressure pT on the transverse stiffness QT after lock-up for glass and 

carbon fibres in a square fibre array is shown in Fig. 6. The behaviour is similar for other fibre arrays. 
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Figure 6. Transverse ply stiffness of kink band after fibre lock-up in a square fibre array (Sq). 

 

4.2 Transverse stiffness with contacting fibres in intersecting planes 

 
The geometry at fibre lock-up for the hexagonal array with vertical symmetry (HxV) with 
vf >/(8 3 ) is shown in Fig. 7. By use of Eqs (7) and (8) we obtain Eq. (16). 
 

 
Figure 7. Geometry at fibre lock-up for hexagonal symmetry HxV 
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The vertical displacement due to transverse fibre compression is given by the following equation: 
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(17) 

 

The resulting vertical strain is then given by Eq. (18). Finally the transverse stiffness, Eq. (19), is 

obtained by dividing the vertical pressure with the strain. 
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4.3 Stiffness of the kink band after fibre lock-up 

 
The stiffness of the kink band in the original fibre direction (“1”) is obtained using conventional 
transformation of the damaged stiffness coefficients d

ijQ  (Qij are the undamaged properties): 
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(20) 

 

Here it has been assumed that the axial stiffness and transverse Poisson’s ratio are unaffected in 

compression, while the shear stiffness after extensive shear microcracking is zero. In general the 

stiffness will be much lower than the initial stiffness prior to kinking, but the increase in the transverse 

stiffness QT after fibre lock-up contributes to a somewhat higher stiffness, particularly for glass fibres 

(Qr 70 GPa), which have a much higher transverse modulus than carbon fibres (Qr 20-25 GPa). 

 

5. Discussion and conclusions 

 

Lower bounds for the fibre lock-up angle  versus fibre volume fraction vf have been obtained for 3D 

fibre arrays by assuming a zero kink band angle, i.e. =0. Upper bounds for  could not be 

established as it increases monotonously with , for which no expressions could be derived or found in 

the literature. Future work should focus on deriving suitable expressions for the kink band angle . 

 

The hexagonal fibre array is generally considered the most representative of real fibre composites. The 

lower bounds for the fibre-lock up angle predicted for the hexagonal arrays are also closest to the 3D 

micro-CT measurements by Wang et al. [13]. The lock-up angle for the HxH array is somewhat lower 

than for the HxV array, but it is likely that kinking allows some lateral movement of the fibres, which 

might allow the fibres to reconfigure to the HxV configuration. 
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It is interesting to note that the 2D model provides a higher value for the lock-up angle than the 3D 

fibre configurations, although the current predictions only provide lower bounds for the lock-up angle. 

This may indicate that the analytical 2D models available in the literature overestimate the lock-up 

angle and that 3D models are required to provide more reliable values. Furthermore, for large shear 

strains the assumptions of elastic behaviour clearly need to be replaced by assumptions of plastic 

deformation or shear microcracking in the matrix. 
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