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Abstract

An original Non Destructive Evaluation procedure is presented. It allows the in-situ identification of
the local elastic behavior of a composite plate, with a little sensitivity to boundary conditions and loads.
The harmonic response of a of a composite plate is approximated as a combination of plane waves. By
the application of a high resolution wavevector analysis tool (HRWA), the wavevectors of these waves
can be extracted. While theoretical wavevectors can be derived from plate’s local equations of motions,
an inverse identification problem can be formulated. Here, the Classical Lamination Plate Theory is used
in order to identify the local specific bending stiffness of a composite CFRP plate with spatially varying
fiber orientations. Experimentally identified plate properties are in good agreement with the predictions
computed from material properties.

1 Introduction

Composite materials are difficult to characterize, because of their complex behavior. Indeed, a num-
ber of parameters such as the anisotropy, the stacking sequence or the heterogeneity of the mechanical
properties influence the global behavior of the final composite structure. In addition, emerging technolo-
gies like Automated Fibre Placement [1, 2] allows to make composite parts with spatially varying fiber
orientations. First, characterization methods based on modal data [3, 4, 5, 6] are suited for the identifi-
cation of structural properties in low frequencies. However, a good estimation is hard to achieve when
the structural damping is strong and/or the boundary conditions not well controlled. Second, a number
of methods based on ultrasonic data [7] can be used. Local mechanical properties can be estimated.
Recently, the development of full-field measurement methods [8, 9] helped the development of medium
frequency methods [10, 11, 12]. The aim is to use the large amount of experimental data given by these
measurement techniques to fill the gap between low and high frequency methods.

In this work, an original identification procedure of composite plate behavior is developed, suited for
in-situ applications. It is applied of full-field data measured on regular grids. It focuses on the extraction of
plane wave in the steady harmonic regime. From the extracted wavevectors ans the Classical Lamination
Theory is formulated a linear inverse identification problem. At the end, the local generalized specific
bending stiffness tensor of an anisotropic plate with heterogeneous properties can be identified.

The paper is organized as follows : First, the dispersion equations of a thin anisotropic laminated
plate are derived from the Classical Lamination Theory, giving the relation between the plane wave’s
wavevectors, the frequency and the generalized plate mechanical properties. Second, the principle of the
High Resolution Wavevector Analysis, which is used to extract the wavevectors from the measurements,
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is presented. Third, the inverse identification problem, based on the extracted wavevectors, is developed.
Finally, an experimental application is shown. The generalized bending behavior of a plate with piece-wise
constant mechanical properties is locally identified and compared to predictions.

2 Principle of the method

2.1 Bending waves travelling in a thin anisotropic plate

The dynamical behavior of a thin laminated plate in low frequencies can be well described by the
Classical Lamination Theory (CLT), as the ratio of the wavelength over the plate thickness is low. More
precisely, when the plate possesses amirror symmetry in regard to its neutral plane, the equation governing
the bending motion is expressed as a fourth-order differential operator on the transverse displacement U3
only :(
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U3(x) = f3(x) (1)

with x = (x1, x2). The generalized parameters Dαβ and M respectively take into account the stiffness and
mass distribution over the plate thickness h :

Dαβ =

h/2∫
−h/2

x2
3 Cαβ (x3) dx3 , M =

h/2∫
−h/2

ρ(x3) dx3 (2)

When considering a zone of the plate free of load, the 2D space and time variable separation approach
can be used in order to compute plane wave solutions that takes the following form :

U3(x, t) = U ei(ωt−k ·x) (3)

where ω is the frequency and k the complex wavevector :

k = κ + iτ =
[
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[
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[
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]
(4)

κ and τ respectively denote the oriented spatial frequency and decay of the wave. In the general case they
are not colinear (φ , ψ). Combining (Eq. 3) and (Eq. 1) leads to the dispersion equation, describing the
complex wavevector components (k1, k2) as a function of the frequency ω :
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2 D26 − ω
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For equal and fixed φ = ψ, the complex wavenumber k = ‖κ‖ + i ‖τ‖ is solution of the following fourth
root :

k4 = ω2
( c4 D11 + s4 D22 + 2c2s2 (D12 + 2D66) + 4c3sD16 + 4cs3D26

M

)−1
(6)

with c = cos φ and s = sin φ. This equation has four distinct solutions : two real and two imaginary. These
two types of solution are respectively related to propagatingwaves which support lays on the entire plate,
and evanescent waves which spatial decay is strong and account for boundary conditions mostly. When
the medium is viscoelastic, it can be modeled by complex stiffness components Dαβ which can depend on
frequency. Consequently the wavevector solutions are not purely real or imaginary any more, but become
complex. Hence a spatial decay ratio γ can be defined :

γ =
‖τ‖

‖κ‖
(7)
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From the value of γ can be sorted two types of waves :mostly propagating (γ < 1) andmostly evanescent
(γ > 1). Focusing on the propagating waves, the imaginary part τ of the wavevector is neglected in the
present work. Consequently the equation (Eq. 6) can be rewritten in order to rise a frequency invariant b
dependent on the wave propagation angle φ only :

b(φ) =
ω2

‖κ‖4
=

c4 D11 + s4 D22 + 2c2s2 (D12 + 2D66) + 4c3sD16 + 4cs3D26

M
(8)

where b(φ) can be interpreted as the equivalent specific bending stiffness of the plate in the direction φ.
It is linearly dependent on the components of the specific bending stiffness tensor B, which are given as :

Bαβ =
Dαβ

M
(9)

For composite plates with mechanical properties varying slowly in space (relatively to the wavelength
λ = 2π/‖κ‖), dispersion equations can still be formulated, but with local parameters Dαβ(x) and M(x).
In consequence, the local bending stiffness components Bαβ(x) can be identified from some locally
extracted wavevectors. It has to be noticed that no attention has been given to the boundary conditions
and loads applied to the plate. Indeed, the preceding developments apply on free zones of the plate, that
has to be located far enough from singularities. However, it has been observed that the impact of these
singularities in the wavevector identification is mostly contained in the imaginary part τ, thus having a
little effect on the identification of B.

With a method suited to extract the local wavevectors of bending waves travelling in an anisotropic
plate in the steady harmonic regime, one is consequently able to identify the local specific bending
stiffness tensor components. The proposed work uses the High Resolution Wavevector Analysis to extract
these wavevectors from a measured plate response.

2.2 The High Resolution Wavevector Analysis

The High Resolution Wavevector Analysis (HRWA) has been recently developed by the authors as a
tool for the characterization of anisotropic plates. It makes use of the ESPRIT algorithm [13], originally
developed for telecommunication applications. A two-dimensional version of the algorithm [14] is used
here. As it is not the main focus of the present work, not much details are given about the theoretical
background and implementation of the HRWA. Basically, the ESPRIT algorithm aims at estimating the
2 × R complex parameters (ur, kr ) of a signal model s(x) composed of a sum of R decaying exponential
embedded in an additive noise n(x) :

s(x) =
R∑
r

ur ei kr ·x + n(x) (10)

The algorithm makes use of the so-called rotational invariance of this signal to estimate the parameters.
In the counterpart, the signal has to be measured over a regular spatial grid mesh X of steps ∆1 and ∆2
and size L1 × L2 :

Xnm = x0 + n∆1e1 + m∆2e2 (11)

The order of the signal R is estimated thanks to the ESTER criterion [15] in its two-dimensional version
[16]. The HRWA consists in applying the ESPRIT algorithm on steady harmonic plate responses s(X, ω)
measured over a frequency range. It can be summarized as follows :

1. Measure the response of the plate s(X, t) to a load that can be transient or stationary and over a
regular grid X (Eq. 11)

2. Take the time Fourier transform of the plate response TF
{
s(X, t)

}
= s(X, ω)
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3. For each frequency ωi, apply the ESPRIT algorithm to s(X, ω) in order to extract a number of
complex wavevectors k

At the end, one obtains a collection of wavevectors as a function of the frequency.
An additional step consists in taking only the most propagating extracted waves into account. Indeed,

the identification of evanescent waves is more sensitive to applied boundary conditions and noise than
the identification of propagating waves. In order to delete these extracted evanescent waves, one can fix
a threshold γmax in the maximum spatial decay γr computed with (Eq. 7). At the end, only extracted
wavevectors fulfilling the following criterion are kept :

γr < γmax (12)

2.3 Inverse identification of the specific bending stiffness

As the equation (Eq. 8) linearly depends on the specific bending stiffness components Bαβ , a linear
system can be built with the P extracted frequency-wavevector pairs (ωp, κp) as data and the Bαβ as
unknowns :

A y = b (13)

with

A =
[
a1 · · · aP

]> (14)

ap =
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]
(15)
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(16)
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[
ω2
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· · ·
ω2

P

‖κP ‖
4

]>
(17)

As a consequence, the Bαβ can be estimated by direct linear fitting methods like Least-Squares, Total
Least-Squares or Weighted Least-Squares. In the proposed work, the Least-Square estimation is used :

y =
(
AH A

)−1 AH b (18)

3 Application to an unhomogeneous CFRP laminated plate

3.1 The experimental setup

For the need of the study, a square symmetric laminated CFRP plate of 30 cm width has been
fabricated. It is made with carbon prepreg layers (150 g/m2). The stacking sequence is [θ, 90◦]S, with
a spatially varying θ. In practice, θ is made piece-wise constant by superimposing square patches with
different fiber orientations over the two homogeneous central layers at 90◦, which are continued along the
entire plate. A top view picture of the plate is shown in (Fig. 1a). The 36 patches are made visible with
the top layer fiber directions θ denoted as thin white lines. The plate is supported by silicon blocks at
three of its corners. On the last corner, an electrodynamic shaker is fixed. It is used to apply a transverse
load, with a stationary white noise as excitation signal. The excitation signal is band-pass filtered in
order to excite only the frequencies contained in the range between 500 Hz and 22 kHz. The plate
response is measured with a Scanning Laser Doppler Vibrometer (SLDV) over a regular grid of 100×100
points. At each point, 100 measurements of 0.1 seconds each are performed. After the computation of the
transfer function estimatorH1 between the measured plate velocity and the electrical excitation signal, the
average is computed over all the realizations. At the end, 2150 steady harmonic plate responses s(X, ωi),
i ∈ [[ 1, 2150 ]] are obtained in the frequency range of interest.
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EL ET GLT νLT ρ e

120 GPa 6.5 GPa 3.5 GPa 0.35 1300 kg/m3 150 µm

Table 1: Material properties of the Carbon prepreg used to fabricate the laminated plate sample.
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Figure 1: Identification of the local specific bending stiffness from HRWA results. (a) Top view of the
plate (stacking sequence : [θ, 90◦]S), which shows the fiber directions θ of the top carbon layer. (b) Local
specific bending stiffness b(φ) (Eq. 8), identified on the location surrounded in red in (Fig. 1a) : HRWA
results as red dot markers ; black line : least-Square fit of (Eq. 18) ; blue line : indicative theoretical
diagram from material engineering constants of (Table 1).

3.2 Application of the HRWA

The HRWA is performed on each of the steady harmonic plate responses that have been obtained, and
at each zone corresponding to each patch location. As a consequence, the locally extracted wavevectors
correspond to plate zones where the mechanical properties are constant. In order to avoid spurious
wavevectors, the wavevector selection strategy (Eq. 12) is used, with γmax = 10%. At the end, one obtains
a collection of approximately five thousand wavevectors by patch location.

3.3 Identification of the specific bending stiffness tensor components

For each patch location, the extracted wavevectors are used as data in the inverse problem (Eqs. 13
to 17). The procedure is illustrated in (Fig. 1b), for the patch surrounded by a red line in the plate
picture (Fig. 1a). Firstly, the values of b(φ) computed from wavevectors (Eq. 8) are denoted as red dots.
Secondly, the fitted model resulting of the inverse problem of (Eq. 18) is shown as a black line. Finally,
the theoretical model is shown as a blue line. This prediction is computed from theoretical values of
Dαβ and M, derived from the approximate mechanical properties of the carbon prepreg, that are listed in
(Table 1). The overall procedure is reproduced at each patch location. At the end, the specific bending
stiffness tensor components Bαβ are identified at each patch location. Both identified values, theoretical
values and relative errors are shown in the (Fig. 2). Experimental and predicted values are in very good
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Figure 2: Components of the local specific bending stiffness tensor B, for each patch of the plate, see
(Fig. 1a). (a) Identified values from HRWA results ; (b) theoretical predictions from material properties
in (Table 1) ; (c) rounded relative errors (%), black is more than 100%.

agreement. However, it can be observed that the coupling components B16 and B26 are weak, thus more
difficult to identify.

4 Conclusion

A Non Destructive Evaluation method has been presented. Based on the extraction of plane waves
in the full-field measurement of the steady harmonic response of a composite plate, it allows for the
identification of the generalized bending properties. The plate anisotropy can be characterized, as well as
the variation of the mechanical properties along the plate dimensions, with a little sensitivity to boundary
conditions.

An experimental application has been presented on a laminated CFRP plate withe piece-wise constant
mechanical properties. The experimental identified local plate properties are in good agreement with the
theoretical values predicted from the approximate material properties.
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