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Abstract

A closed-form solution is proposed for determinthg buckling of composite plates under combined
thermal-mechanical loading. The plates are suljettiea constant temperature increment, combined
with applied displacement, while transversal inaglaexpansion is restricted. The plates are studied
using Von Karméan equations in combination with sieal lamination theory, being the study limited
to symmetric and balanced laminates. The probleformmulated in terms of in-plane displacement
fields and solved using the Galerkin method. Anldital formula is obtained that relates critical
temperatures to applied plate displacement. An pi@mf a possible application is presented in the
form of graph and is verified by finite element bsé. The obtained formula can be used during
initial design for sensitivity analysis and optimiion, and also for deriving specific buckling seap

1. Introduction

Thermal buckling has been a topic of research siheeearly stages of supersonic flight, when the
focus was on structures made of metallic matefiad3]. In the following decades, several research
activities were conducted to investigate the thétmakling of laminate composite materials. Among
the papers available in literature are those oftkiélyi and Ashton [4], Tauchert [5], Meyers and Hyer
[6], Nemeth [7] or Jones[8]. However, most studesalyse thermal buckling with restricted
expansions: plate edges are kept straight and amnist length, i.e. the original dimensions of the
panel remain unchanged. Such boundary conditioesept the plates from the introduction of
external mechanical loads, such as compressiohearsThere are, however, a few cases where the
authors consider load introduction, such as thaystdi Nemeth [9] for infinite plates.

Although in the last decade extensive analytice¢éaech has been done in the field of pure mecHanica
buckling [10-13], there are few studies that exploombined thermal-mechanical buckling, like the
one of Jones [14] for metallic materials, or thedgt of Abdalla et al. [15] for the optimization of
tailored thin laminate panels. Being thermal-medatalnbuckling a basic load case in aeronautical
structures, there is a clear need of compact faswhlid for initial design.

An analysis of flat, symmetric and balanced comeokminated plates is here presented, where
expansions are fully constrained at two oppositgesdvhile temperature increment is applied and
mechanical load is introduced in the form of axaplacement. The obtained closed-form solution
can be applied to composite structures of the ngrsonic aircrafts.
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2. Analytical Formulation
A rectangular plate of length and widthb is considered, as shown in Figure 1. The pliYe

coincides with the mid-plane of the plate and #thaxis is perpendicular to this plane. The plate
presents the boundary conditions reported in egusi(Eq. 1):

Atx =0,a: u°=+4,/2 Aty =0,b: u® = free
v? = free v°=0 Q)
wl =0 w? =0

whereu?, v°, w° are the displacements of the plate mid-planeérréispectivel, Y andZ directions.

The plate is subjected to length variatibnalongX axis. Cases of plate stretching are represented by
positive values of4,., while for cases of plate shortening assumes negative values. The whole plate
experiments a uniform temperature incremafitrespect to a stress-free state of equilibrium. The
plate is analysed by means of Von Karman platerth@o combination with classical lamination
theory.
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Figure 1. Composite plate subject to temperature and dispiaat.

The laminate stacking is assumed to be symmetrit l@anced, and material properties are
considered to remain constant within the analysedje of temperatures. The in-plane behaviour of
the laminate is ruled by the membrane constitugiyeation (Eq. 2):

Ny) (A A 0 uz Ni
Ny ¢ = !AIZ Az 0 vy -1 Ny )
ny 0 0 Agg ug, + U?C N;y

whereN,, Ny, N,, are the force resultants at the plate eddgs.N,, Ni,, are the thermal force
resultants, the termd;;, (i,j = 1,2, 6) are the membrane stiffness terms from the claskimination
theory, and the comma followed by an index dendi#fsrentiation with respect to that index. For
homogeneous temperature distributions, the thefforake resultants can be expressed as in next
equations (Eq. 3):

NI =Ny AT NI =Ny, AT NI, =Ny, AT 3)
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wherelVZ; andl\Al; are the thermal force resultant per unit changewiperature. For symmetric and

balanced Iaminatesﬁ;y vanishes and the remaining quantities assumectime given in presented
equations (Eq. 4):

Ny= (Annax + Arpay) N§: (4120 + Apoty) (4)

wherea, anda, are the laminate expansion coefficients, as defime Hyer [16]. The out-of-plane
equilibrium equation can be expressed as in folhgwequation (Eq. 5):

D11W,xxxx + 2(Dlz + 2D66)W,xxyy + DZZW,yyyy - NxW,xx - NyW,yy =0 (5)

where theD;; (i,j = 1,2,6) represent the laminate bending and twisting reé terms from the

classical lamination theory. The in-plane displaeetmis described in linear function of the total
variation of lengthi,, as in following equation (Eg. 6):

A A4, (6)

while v° = 0. The out-of-plane displacement can be expresseal gurier series as in following
equation (Eq. 7):

= i; z I m sm mnx) sin (nbg) (7)

whereW,,, is the amplitude of a generic Fourier coefficieanidm, n are the number of half waves
for that particular series term MhandY direction, respectively. The force resultantsagatermined by
introducing the displacement field presented in @mto the membrane constitutive relation (Eq. 2),
yielding the following equations (Eq. 8):

A, A,
Ny = Ay — — NI AT Ny = A, — —N AT (8)

After substituting Eq. 7 for the out-of-plane despements and Eq. 8 for the force resultants intcbEq
for out-of-plane equilibrium, the following expréas (Eq. 9) unfolds:

Z Z < n*(b*m*Dy; + 2a?2b?*m?n?(D;, + 2Dge) + a4n4D22) ©)

a*b*
m=1n=1

w2 ((aZnZAlz + b?m?A,)A4, — (NZ; ab?m? +N§, a3n2) AT)
a3b?

The Galerkin method is based on the solution appration of a differential equation by means of an
assumed solution or trial function, here Eq. 7gBlng this into Eq. 5 yields a residual which has t
be minimized. This residual is given by the expssat the left of the equal sign in Eg. 9. The
evaluation of the residual for a generic term @f Bourier series yields a generic equation, wdch i
function of a generic coefficie,,, and the large bracket in Eq. 9. Equation solutiomaly either
W,.» being zero, also known as the trivial solutioe.(the plate remains flat) or the content of the
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bracket being zero. Solving the resulting equatiith respect taAT, the following equation (Eq. 10)
respect ta\T is obtained:

(10)

_a’n?A;p + bPmPAy (A_x) N m2(b*m*Dy; + 2a?b?>m?n?(Dy, + 2Dgg) + a*n*D,5)

= T =T P =
b*m? Ny+a*n? N, \ @ a?b? (bzm2 N§+ a’n? ND

Eq. 10 represents states of equilibrium for whioh out-of-plane deflections are nonzero. For each
state of equilibrium given by the number of halfweam andn, the obtained Eq. 10 relates plate
length variationsl, with thermal incrementAT. For a certaind,., the buckling temperature is given
by the configuration with the combinationmafandn that delivers the lowedT .

3. Application
An example is here presented in graphical formafpiate of dimensions 3#m x 575mm, made of

AS4/3502 composite material, which properties &@ in Table 1. The plate has a quasi-isotropic
sequence45/—45/0/90],;. The values of laminate expansion coefficients @re= a, = 1.72 -

1076 °Cc~1,

Table 1. AS4/3502 lamina properties.

E11 EZZ Glz V12 a’1 " 106 az " 106 tply
(MPa) (MPa) (MPa) °c™H (°c™h (mm)
155000 8070 4550 0.22 -0.07 30.10 0.127

For the described plate a diagram of thermal iner@mT versus applied length variatidy is
obtained from Eq. 10 and is reported in Figure 2.

Starting from a buckling shape witth = 1,n =1 a line is obtained by plotting the resulting
expression and is represented as dashed in theeFiBy leaving nown = 1 fixed and assuming
m =1,2,3,... analogue dashed lines can be generated, being lines related to buckling shapes
with multiple half-waves inX direction. Repeating the operation with= 1, n = 1,2, 3, ... dashed
lines related to buckling shapes with multiple haifves inY direction are reported.

Entering now Figure 2 with a given length variatibpy the temperature at which the plate buckles is
determined by the dashed line delivering the lowedte of AT. These lines intersect each other so
the buckling shape defining the low@dt will change depending on the mechanical loadingdimn

4,. The result of collecting all the loweAT for any given4,. is the buckling curve, represented as
bold in Figure 2, and is constituted by differeagments of several intersecting dashed lines. The
buckling curve divides the loading plang, ( AT) into two subspaces, corresponding to buckled and
unbuckled states. The intersection of the bucktingre with the horizontal axis corresponds to the
loading situation in which the plate buckles ungdere mechanical loadindT = 0 °C); for this case,

the length variation has a value4f = —0.04 mm and the plate buckles under the shape of one half-
wave in bothX andY directions. Conversely, the intersection with Weetical axis represents the case
in which the plate remains constant in length € 0 mm) and buckles under pure heating. For this
case, the thermal increment has a valuATof= 15.9 °C, and the buckling shape has only one half-
wave in both¥ andY directions.
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Figure 2. Buckling curve for thermal-mechanical bucklingomimposite plate.

If, for example, the plate experiments a stretcl pf= 0.3 mm, the buckling temperature increases
significantly, rising up taAT = 129.9 °C and the buckling presents a mode with two halfegawnY
direction. It is possible to note that under hegationditions, plate stretching has stabilizing effe
against buckling. States of stretching and coalirtyice biaxial tension states in the plate so bgkl
under this loading condition is not possible. Casedy, if the plate experiments a shortening of
4, = —0.02 mm, buckling temperature descendsA® = 8.01 °C. Under states of shortening and
heating, the plate experiments a state of biaxdmhpgression that noticeably reduces the buckling
temperature.

Considering now a length variation df, = —0.3 mm, the shortening is larger than the critical
shortening for pure mechanical loading. In ordemptevent the plate from buckling, it should be
cooled down to temperatures lower thsfh = —143.5 °C; and the buckling pattern corresponds to
three half-waves in the axial direction.

Finite element analysis were performed in Abaqgusvégification. The plate is modelled with shell
elements S4R, with element size of 2006 x 20.5mm. The plate is subjected to the boundary
conditions described by the set of Eq. 1, and @sléal under combinations of mechanical load and
temperature. The results of the eigenvalue analyseseported in Figure 2 with the symbol of a.star
Images of the buckling shapes obtained using Abagrialso reported.
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Figure 2 is restricted to a specific material, kitag and plate geometry, but similar figures can be
generated for plates with different dimensions amaterials by applying Eq. 10. These graphical
results deliver valuable information for the initghases of structural design. The deduced Exmnessi
(Eq. 10) can be readily implemented in optimizatialgorithms, allowing to obtain thermal-
mechanical buckling with low computational effdttcan be also used for deriving targeted buckling
shapes.

4. Conclusions

The combined thermal and mechanical buckling behawf thin, symmetric and balanced laminated
plates was investigated. A formula was obtained, adiagram illustrating the buckling behaviour of
a rectangular plate was presented. The diagramertsephe buckling curve that divides the
displacement-temperature loading space into twgmates, corresponding to buckled and unbuckled
states. It is shown how mechanically loaded laneidgiates can be either stabilized or destabilzed
either cooling or heating. The presented graph shasvwell how buckling shapes can be achieved
under particular loading conditions. The obtainedutts offer valuable insight for structural iniitia
design. The deduced equation, due to its simplioiign be used for sensitivity analysis and
optimization.
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