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Abstract 

Composite pressure vessels made by filament winding processes are commonly used in aerospace 

design due to weight saving compared to metal parts. This technique involves complexities in 

analyzing the geometry especially in the dome section. Tools already exist to predict the geometrical 

characteristics like winding angle, ply thickness or some singularities. However they are limited to 

specific sequence dome lay-up. A numerical tool has been developed to simulate windings layer after 

layer.  

 

The goal is to deal with any kind of sequence dome lay-up calculation. To ensure this there are three 

main challenges that are seldom cited in scientific literature. The first is when the geometry of the 

current ply overlaps the inferior ply. The second is the management of convex parts of a ply. Finally, 

our mathematical tool is able to deal with the accumulation of composite fibers near the polar boss 

outer radius. 

 

 

1. Introduction 

 

The winding process produces composite tanks capable of withstanding high internal pressures. The 

very high specific properties of these materials lead to structures with remarkable rigidity and strength 

for a contained mass. The filament winding continuously deposits composite fibers on a mould or a 

mandrel with a rotational movement. This manufacturing method is particularly suitable for revolution 

structures. In the space industry this technology is already used for some motor cases or tanks. To best 

design and optimize these structures it becomes necessary to integrate the simulation of the winding 

process of composite structures.  

 

The performance of a composite structure depends on the adequacy between the loading directions and 

the distribution of the fibrous reinforcement. In the case of the filament winding process, a reliable 

estimation of the mechanical behaviour of the structure is conditioned by the most exact simulation 

possible of the fiber path, in particular in the domes, considered as the most delicate parts to simulate. 

Several studies [1-4] have allowed the development of successive winding models that enable the 

complex geometry of domes to be managed. However, these models remain limited with regard to the 
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strong disparity of possible windings. The objective of this work is to propose a tool for simulating the 

filament winding of any winding sequences on generic revolution geometries. 

 

The ultimate aim is to use the model developed in an optimization procedure in which lay-up 

orientation, stacking sequence and filament winding parameters are significant parameters. 

 

 

2. Basic aspects 

 

2.1.  Winding angle determination 

 

Geodesic winding provides to the best winding stability by finding the shortest fiber path between two 

points on any surface. However, non-geodesic winding increases the scope of the geodesic winding 

technique through the use of the slippage tendency of the fibers on their supporting surface.  

Descriptions of geodesic and non-geodesic winding methods can be found in [5,6]. 

 

For the purposes of future optimization, it is desirable to have a general equation to describe both 

geodesic and non-geodesic winding. The following equation [6] is valid: 

 𝑑𝛼

𝑑𝑧
= 𝜆 [

sin 𝛼 tan 𝛼

𝑟
−

𝑟"

1 + 𝑟′2 cos 𝛼] −
𝑟′ tan 𝛼

𝑟
 

(1) 

where  is the angle between the fiber tow and the meridian direction of the dome,  the slippage 

coefficient of the fiber tows on the supporting surface and r and z the radial and axial coordinates of 

the dome, as shown in Fig. 1.  

 

Depending on the sign of , the path will be lengthened or shrunk and thus influence the positioning of 

the radius at the turn-around of the continuous fiber. Usually this differential equation is solved by a 

Runge-Kutta method to order 4. The main problem with this method of resolution is the number of 

integration points required to ensure convergence of results. We will see in the proposed developments 

that this method of resolution, although used by all the routines allowing the multi-sequence 

simulation of filament winding, is not sufficiently adapted due to the inherent nature of the differential 

equation Eq. 1. 

 

 
 

Figure 1. Geometry of the liner 

 

 

To ensure the continuity of the winding between the cylindrical section of the tank and the dome, the 

following equation [6] is used: 

 𝜆 = 𝜆𝑚𝑎𝑥 cos (
𝜋

2

𝑟 − 𝑟𝑡𝑢𝑟𝑛

𝑅 − 𝑟𝑡𝑢𝑟𝑛
) 

(2) 
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where R is the external equator radius of the tank (including the thickness of the plies) in the 

cylindrical section, 𝑟𝑡𝑢𝑟𝑛 the radius at the turn-around point and 𝜆𝑚𝑎𝑥 the arbitrary top value of the 

slippage coefficient. The arbitrary top value 𝜆𝑚𝑎𝑥 can be an optimization parameter as long as 
|𝜆𝑚𝑎𝑥| ≤ 𝜆𝑙𝑖𝑚 where 𝜆𝑙𝑖𝑚 is the slippage limit coefficient which depends on practical winding 

parameters.  

 

 

2.2.  Thickness determination 

 

Once the radius at the turn-around point determined by the resolution of Eq. 1, it is necessary to 

determine the evolution of the thickness of the composite layer of the cylindrical section up to this 

radius at the turn-around point. Leh [4] presented several formulations of thickness. It shows that 

Wang's formulation [2] is one of the most recent methods and presents very good results in 

comparison with the experimental one. It is based on the use of a double formulation to reflect as 

accurately as possible the thickness evolution: 

 
𝑡(𝑟) =

𝑛𝑅𝑚𝑅𝑡𝑝

𝜋
[arccos (

𝑟𝑡𝑢𝑟𝑛

𝑟
) − arccos (

𝑟𝑏

𝑟
)]    for   𝑟2𝑏 ≤ 𝑟 ≤ 𝑅 

(3) 

 𝑡(𝑟) = 𝐴 + 𝐵𝑟 + 𝐶𝑟2 + 𝐷𝑟3     for    𝑟𝑡𝑢𝑟𝑛 ≤ 𝑟 ≤ 𝑟2𝑏 (4) 

where 𝑛𝑅, 𝑚𝑅 are the number of pseudo-plies (±𝛼𝑅) and their quantity in the cylindrical section, 𝑡𝑝 is 

the thickness of a fiber tow or tape, b is the width of a fiber tape, 𝑡𝑅  and 𝛼𝑅 are the thickness of the 

layer and the initial winding angle on the cylindrical part, respectively. The parameters 𝑟𝑏 and 𝑟2𝑏are 

the radius at one and two tape-width distances, respectively, from the turn-around point, and A, B, C 

and D the four coefficients of the method presented in [2] and defined using boundary conditions 

(pseudo-ply thickness at the turn-around radius, continuity of the thickness and the curvature in 𝑟2𝑏 

between Eqs. 3 and 4, and constant material volume between 𝑟𝑡𝑢𝑟𝑛 and 𝑟2𝑏). 

 

 

2.3.  Lay-up determination 

 

In the multi-sequence lay-up of a dome, prediction is a tricky process, given that the determination of 

both winding angle and thickness is based on the current supporting surface topology, which, in a 

multi-layer lay-up, depends on the previous supporting surface topologies. The classical process 

presented by Leh [4]  is as follows: 

 recovery and storage in internal variables of geometric data (in the form of elliptical liner 

definition parameters) and winding sequence parameters, 

 a definition of the coordinates according to z and r and a discretization of this geometry, 

 the calculation of first and second derivatives of current shape line by the finite difference 

method to solve Eq. 1, 

 the resolution of Eq.1 by a Runge-Kutta method to order 4 in order to obtain the value of the 

radius at the turn-around of the current layer, 

 the calculation of the overthickness to be applied to the previous layer thanks to the Wang’s 

formulation, 

 normal calculation and application of the previously determined overthickness at each 

integration point, 

 smoothing of new points calculated by a B-spline, 

 the looping of all these steps for each layer described by the sequence of the winding angles. 

 

This process has some limitations not compatible with configuration extensions. Thus the tool is not 

able to deal with winding lay-up other than increasing initial winding angle lay-up. It consequently 

does not make possible to cover a layer n with the layer n + 1. It is also highly unstable when covering 

a convex shape. As shown in Fig. 2, if the integration step is too large, there is a possibility that the 

normals at two (or more) integration points intersect. 

and 
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This results in the creation of points for the new layer that will no longer be ordered in an increasing z 

when the overthickness is added.  

 

Finally, another critical point consists in the absence of possibility to model the covering of the barrel 

of the boss  by several layers of composite. Indeed this routine foresees that only the first layer reaches 

the barrel of the boss. Then, because only sequences of increasing winding angles are managed, the 

other layers can only be modelled with increasing radii at the turn-around point. 

 

 

 

 

 

 

Figure 2. Overlap instability for convex areas 

due to the interweaving of normals close to 

integration points 

  

Figure 3. Winding angle variation  

according to z 

 

3. Improvements 

 

3.1.  Digital processing of the evolution of  𝒅𝜶/𝒅𝒛 

 

All the identified authors use the Runge-Kutta algorithm at order 4 (RK4) to solve Eq. 1 for 

determining the radius at the turn-around point of the current layer. The main problem with this 

resolution method is it is highly dependent on the number of integration points resulting from the 

geometric discretization of the current layer. 

 

As we can see in Fig. 3, the problem is strongly non-linear: the closer we get to 𝛼 = 90°, the more the 

influence of the discretization step is preponderant. This is problematic because the calculation error 

via RK4 is strongly related to discretization and consequently to calculation time. The resolution 

model should also be validated by optimizing the calculation step to reach a cumulative error below an 

admissible threshold.  

 

Eq. 1 is an equation whose sensitivity to parameters makes it difficult to solve by explicit numerical 

methods. The closer we get to 𝛼 = 90° the more sensitive it is and the less relevant the RK4 algorithm 

is to solve it. Works using this algorithm do not quantify the error associated with the resolution of this 

problem with this method. The solution to enable the algorithm to converge is then to define an 

extremely fine step without obtaining information on the cumulative error. There are many powerful 

resolution algorithms, originally optimized to run on low-performance machines, alternative to explicit 

methods. 

 

This is the case with the LSODA [7] algorithm, which offers many advantages. The first is that it is 

able to manage different resolution methods in the same calculation. Thus, it can switch from an 

Adams method to a BDF method automatically depending on the degree of stiffness of the differential 

equation. The algorithm is also independent of the calculation step imposed. The code automatically 
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manages the step needed to solve the problem based on the calculated error to ensure convergence. 

Once solved on the number of steps strictly necessary, the function then re-interpolates at the 

integration points specified initially. 

 
 
3.2.  Instabilities due to convex zones 

 

Due to the reduction in the number of integration points compared to a purely explicit routine, the 

code is then sensitive to the problem of overlapping instability of convex areas (Fig. 2) : physically 

meaningless loops may appear (Fig. 4a, Fig. 4b). It is therefore necessary to introduce a specific 

function to erase these loops (Fig. 4b). This function detects each segment consisting of two 

successive integration points intersecting another segment of the original curve. In order to limit the 

calculation time, the function must only take into account the convex parts of the curve to be checked. 

The outputs of this function are all the intersection points of the curve as well as two series of z and r 

coordinates of the erased instability loops. 
 

 

     
 

Figure 4. Resolution of instabilities related to convex shapes of geometries forthe current layer 
 

 

In addition, a smoothing function is required to ensure the stability of the next layer simulation (Fig. 

5a). The degree of the smoothing function will depend on the geometric dimensions of the wound 

body and the thickness of the composite layers. This smoothing function has to manage the different 

possible winding angle sequences: 

 sequence with equal initial angles (Fig. 5b), 

 sequence with decreasing initial angles (Fig. 5c), 

 sequence with increasing initial angles (Fig. 5d), 

 sequence with alternation of the three previous types. 
 

 

 

(b) (a) 

(a) (b) 
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Figure 5. Smoothing routine of layer n with layer n – 1 (a), in sequence of equal (b), decreasing (c) 

and increasing (d) initial winding angles 

 

 

3.3.  Layers overlapping the barrel of the boss 

 

Modelling the helical layers overlapping the barrel of the boss is a development which is less dealt 

with in the literature, although [8] addresses this issue. In order to take into account these overlappings 

which may occur near the boss (Fig. 6), a method is proposed to transfer the overthickness. [8] 

considers a linear extension tangent to the curve at the radius of the boss  𝑟𝑏𝑜𝑠𝑠 to be the support for 

the calculation of the current layer. It then proposes that the volume defined by the winding for 

𝑟 < 𝑟𝑏𝑜𝑠𝑠 be reported with respect to the location of the curve presenting the maximum thickness 

(𝑟𝑡𝑚𝑎𝑥) and satisfying several conditions: 

 the thickness is redefined by: 

 𝑡(𝑟) = 𝐴 + 𝐵𝑟 + 𝐶𝑟2        for     𝑟𝑏𝑜𝑠𝑠 ≤ 𝑟 ≤ 𝑟𝑡𝑚𝑎𝑥 (5) 

 the volume for a radius smaller than  𝑟𝑏𝑜𝑠𝑠 is distributed between 𝑟𝑏𝑜𝑠𝑠 and 𝑟𝑡𝑚𝑎𝑥, 

 continuity of thickness at 𝑟𝑡𝑚𝑎𝑥, 

 continuity of slope at 𝑟𝑡𝑚𝑎𝑥. 

 

The problem with this approach is twofold. First of all, the expression of the thickness in 𝑟2 does not 

allow to take into account geometries with an inflection point, which is often the case. On the other 

hand, as can be seen in Fig. 7, this approach does not work if the radius at maximum thickness (𝑟𝑡𝑚𝑎𝑥) 

is also less than 𝑟𝑏𝑜𝑠𝑠. 

 

 

 

 

 
 

Figure 6. Micrograph of storage tanks 

studied in [8] 

  

Figure 7. Volume transfer defined by a 

winding for rturn <  rboss 

(c) (d) 
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A satisfactory routine should be able to handle overlapping layers on the boss. The most common 

function whose curve has an inflection point is a polynomial function of degree 3. Rather than 

reasoning about the redefinition of the overthickness to be applied, the geometry of the current layer is 

directly modified once it has been calculated. It is therefore first necessary to extend the spatial 

domain of the lower layer which will serve as a support for the calculation of the current layer for the 

values of 𝑟 < 𝑟𝑏𝑜𝑠𝑠. Note that a second order spline has been finally chosen (Fig. 8a). 

 

As one of the conditions on the polynomial of degree 3 used to smooth this kind of layer regards a 

volume equivalence, it is necessary to be able to perform a numerical integration. To do this, a 

polynomial definition of z is chosen as a function of r. A new geometry is then defined as:  

 𝑧 = 𝐴 + 𝐵𝑟 + 𝐶𝑟2 + 𝐷𝑟3 (6) 

This new geometry is defined over a transfer length 𝐿𝑒𝑥. To determine the parameters A, B, C and D it 

is necessary to introduce 4 conditions, namely: 

 continuity at fixed 𝐿𝑒𝑥, 

 continuity of the slope at 𝐿𝑒𝑥 , 

 slope equal to the one of previous layer at  𝑟 = 𝑟𝑏𝑜𝑠𝑠, 

 conservation of the area between 𝑟𝑏𝑜𝑠𝑠 and 𝑟𝑏𝑜𝑠𝑠 + 𝐿𝑒𝑥 for initial formulation initiale and 

polynomial formulation. 

 

Once the equation system is solved, it is then possible to switch back to a definition of r as a function 

of z to establish the new geometry. The routine is then able to manage the layers overlapping the barrel 

of the boss  (Fig. 8a) and to propose a redefinition of the geometry in a polynomial of degree 3 (Fig. 

8b). 

 

 

 
 

Figure 8. Layer overlapping the barrel of the boss (a) and geometrical definition in the form of 

polynomial of degree 3 (b) 

 

 

From a physical point of view, the only value that the winding angle can take in the vicinity of the 

boss end is  𝛼 = 90°. This corresponds to the tilting of the fiber during winding at the radius at the 

turn-around point. Indeed, a value lower would mean that the winding head hits the boss barrel. 

 

If the initial winding angle at the cylinder/dome junction is fixed by the process, there is only one 

parameter left to ensure these conditions, i.e. . This parameter is then optimized to ensure that the 

winding is feasible. To do this, the routine solves Eq. 1 backwards from the radius at the turn-around 

point 𝑟𝑡𝑢𝑟𝑛 = 𝑟𝑏𝑜𝑠𝑠 with a definition of  set by a value of 𝜆𝑚𝑎𝑥. The idea is then to compare the value 

of the calculated initial winding angle with the value of the imposed initial winding angle and this by 

modifying the value of the parameter 𝜆𝑚𝑎𝑥 during optimisation process. 

 

(a) (b) 
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For this one must defined a cost function: 

 Δ = 𝛼0(𝜆𝑚𝑎𝑥) − 𝛼0 (7) 

Thanks to an adapted algorithm, it’s possible to optimize this calculation by minimizing this cost 

function, i.e. by searching for the root of: 

 Δ = 0,   − 𝜇𝑠 < 𝜆𝑚𝑎𝑥 < 𝜇𝑠 (8) 

where 𝜇𝑠 is the static friction coefficient, the maximum value of the sliding coefficient beyond which 

it becomes impossible to wind. 

Thus it is possible to identify the 𝜆𝑚𝑎𝑥 value that satisfies both 𝛼 =
𝜋

2
 at the barrel of the boss and  

α = 𝛼0  for  𝑟 = 𝑅. 

 

 

4. Conclusions 

 

The work presented here allows the development of a generic filament winding routine to simulate any 

sequence. It is not limited to specific geometries (which must be axisymmetric) and is suitable to any 

winding sequence. This is made possible by a number of functions developed such as smoothing or 

winding stabilization functions on convex geometries. Particular attention is paid to a physical 

interpretation of certain parameters such as the definition of the slip coefficient or the management of 

the winding angle in the vicinity of the boss. 

 

The interest of this approach is to propose the integration of a simulation module of the winding 

process, flexible enough to be adaptable to the geometrical peculiarities of the motor cases or tanks, in 

a design and optimization tool for wound composite structures sizing. 
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