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WWieakseonstraint 4D=Var: the forcing formulation

» The idea of weak-constraint 4D-Var is to relax the perfect model assumption.

v

The price to pay is a huge increase in problem dimensionality.

» This can be mitigated by making additional assumption, e.g. the model error w is constant over the DA window:
XK1 = Mpgre (x) + W £ M (W, %0)

» The cost function can hence be written

T (w,x0) = % ||x0 _Xng?.—l + % ||W _Wsz_l

L
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» This is called forcing formulation of weak-constraint 4D-Var. This is the weak-constraint 4D-Var currently
implemented in OOPS (the ECMWF data assimilation system).
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\Weealkeeonstraint 4BD=Var: a neural network formulation

» Now suppose that the dynamical model is parametrised by a set of parameters p constant over the window:
xi = M (0. %0)
» Following the same approach, the cost function becomes

2
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» This approach can be seen as a neural network formulation of weak-constraint 4D-Var when p is the set of parameters
(weights and biases) of a NN.
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Netiral network 4B=Var for model error correction

» In order to merge the two approaches, we consider the case where the constant model error w is estimated using a

neural network:
M%"-‘Q—l:k‘ (paxk) = Mk+1:k: (xk) +w, w= .F(p,XQ) .

» This means that the model evolution becomes
o (P, %0) = M5 (F (P, %0) ,%0) -

» As a consequence, it will be possible to build this simplified method on top of the currently implemented
weak-constraint 4D-Var, in the incremental assimilation framework (with inner and outer loops).
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Gradient of the incremental cost function

Input: ép and éxo

1. dw < FPop + F*dxo > TL of the NN F
2: Zo — Ro_l (H06x0 — do)

3: fork=1to L —1do

4: Oxp ¢ M. 10xp_1 + 0w > TL of the dynamical model M., 1
5: Zp R;l (Hkéxk — dk)

6: end for

7. 0%, 1 <0 > AD variable for system state
8: Owp_1 < 0 > AD variable for model error
o- fork=L—1to1do

10: OXp +— H;Crzk + 0%

11: OWg_1 < 0%y + OWg

12: OXp_q M,;r:k_léfck > AD of the dynamical model M.,
13: end for

14: 0% HJZO + d%o

15 6%0 + [F¥]T 6% > AD of the NN F
16: 6p + [FP]T 6wo > AD of the NN F
17: 8%g < B! (x'0 — xg + 5x0) + 0%g

18 0p P! (pi —pb+ ép) +6p
Output: Vgp:’f"" = Jp and V(;XO.?"" EX2)
0 iy P S



Gradient of the incremental cost function

In order to implement the simplified NN 4D-Var we can reuse most of the framework already in place for WC 4D-Var.

v

» A few new bricks need to be implemented:

» the forward operator 7 of the NN to compute the nonlinear trajectory at the start of each outer iteration;
» the tangent linear (TL) operators F* and F" of the NN;
» the adjoint (AD) operators [F*] " and [F?]" of the NN.

» These operators have to be computed in the model core (where the components of the state are available), which is
implemented in Fortran.

» To do so, we have implemented our own NN library in Fortran.

https://github.com/cerea-daml/fnn

» The FNN library has been interfaced and included in OOPS.
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Experimienits with' the [ES

>

We want to develop a model error correction for the operational IFS.

v

We use a two-step training process:

» offline learning to screen potential architectures and pre-train the NN
» online learning: data assimilation and forecast experiments

v

Offline experiments rely on preliminary work by Bonavita & Laloyaux (2020), using the operational analyses produced
by ECMWF between 2017 and 2021.

» The NN is trained to predict the analysis increments, which are available every 12 hours.

v

Training / validation split:

» training from 2017-01-01 to 2020-10-01 (IFS cycles 43R1 to 47R1);
» validation from 2020-10-01 to 2021-10-01 (IFS cycles 47R1 to 47R2).
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fFoeus onl largerscaler model errors

» Focus on large-scale model errors: we use the data at a low spectral resolution (T15), interpolated in Gaussian grid
with 16 x 31 nodes.

Input Output
Analysis at tg Analysis increment at tg + 12h

240 260 280 300 -2 -1 0 1 2
temperature, level 137 (K) temperature, level 137 (K)
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Netizal netweork architectulre

» We compute a correction for 4 variables in the same NN: temperature (t), logarithm of surface pressure (Insp), vorticity (vo) and
divergence (d).

» We keep the same vertical architecture as in Bonavita & Laloyaux (2020).
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Ofliline performance of the NN
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» Overall, the NN predicts approximately 15% of the analysis
increments. 0.7
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Ofliline performance of the NN

» The NN is most accurate close to the surface.

» The estimations deteriorate between 10 and 100 hPa, where weak constraint
4D-Var is active in the test set.
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Second stepi daital assimillation’ experiments

» The trained NN is inserted into the IFS, in a standard research configuration:

» 12h assimilation window;

» Latest IFS cycle 48R1;

» Resolution of the nonlinear model: TCo399;

» Resolution of the inner loops: TL95, TL159, TL255.

» Three-month experiment in summer 2022 (outside the offline training and test set).
» First test series without online learning.

This is equivalent to using strong-constraint 4D-Var with the corrected model.

» Second test series with online learning.
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Patarassimilation experiments without online training

» Comparison to the operational analysis.

» Baseline: standard weak-constraint 4D-Var by Laloyaux et al. (2020).

» Significantly reduced errors above 100 hPa, especially at long lead time.

» Below 100 hPa, the performance in the tropics is degraded.

» For Z500, we see a RMSE reduction of 1% to 2 %.
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Patarassimilation experiments with online training:

» Comparison to the operational analysis.

» Baseline: experiment without online training.

» Significantly reduced the errors in the stratosphere.

» Especially in the northern hemisphere for temperature and in the tropics
for vector winds.
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Patarassimilation experiments with online training:

» Comparison to independent observations.

» Overall, the impact on forecast RMSE of all variables is positive in the
northern hemisphere and in the tropics.

» Relatively modest impact in the southern hemisphere except in the
stratosphere.

» On the downside, some score are slightly degraded, e.g. temperature at
850 hPa.
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» We have developed a new variant of weak-constraint 4D-Var to perform an online, joint estimation of the system state
and NN parameters.

» The new variant is built on top of the existing weak-constraint 4D-Var, in the incremental assimilation framework.
» The new variant is implemented in OOPS, using a newly developed NN library in Fortran (FNN).

» We are testing the method with the operational IFS.

v

First results are promising.
» Upcoming challenges:

» training at higher resolution;
» develop a time-dependent correction within the window;
» improve the consistency between offline and online training.

» More details can be found in our preprint:

https://doi.org/10.48550/arXiv.2403.03702
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