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Motivation

• Variational data assimilation: find the most likely state of the atmosphere given the previous forecast (background) 
and new observations

• 3D-Var: all observations valid at the same time

• 4D-Var: observations valid at different times

• 3D/4D-Var in global numerical weather prediction (NWP) models too expensive to be performed in gridpoint space 
=> it is performed in a control space defined by analytical transformations utilising manually-defined physical 
balances and correlations

• Weakness: tropical balances are not adequately represented using these analytical transformations

• Idea: Use neural-network-discovered transformations from gridpoint space to a reduced-order latent space and 
perform variational cost function minimisation in the latent space
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Variational autoencoder (VAE)

• VAE architecture based on Brohan (2022)

• Input data: daily mean T850 from ERA5 reanalysis on latitude-longitude grid 
   (0.25˚ × 0.25˚ resolution → 720 × 1440 grid points)

• Training: reconstruction + regularisation

• Regularisation ensures Gaussian properties of the latent vector elements required for variational DA, 
and smoothness of the latent space

LATENT VECTOR

ENCODER DECODER
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3D-Var cost function
• Assumptions:

• Background and observations are independent

• Their errors are Gaussian

• Cost function:

x … state of the atmosphere in the grid point space
xb ... background vector
B … background-error covariance matrix
y ... observation vector
H … observation operator
R … observation-error covariance matrix

xa ... analysis
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• Conventional cost function:

• Cost function in latent space:

z … latent vector
zb ... background defined in latent space
Bz … background-error covariance matrix
y ... observations vector
H … observation operator
D … decoder
R … observation-error covariance matrix

za ... latent space analysis
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Setup of observing system simulation experiments

• Background simulated from ground truth for previous day (d-1)

• Observations simulated from ground truth for present day (d)

• Ensemble approach: 150 ensemble members for background (perturbed according to Bz) 
and observations (perturbed according to R)
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Background-error covariance matrix

• Bz quasi-diagonal => we only use the diagonal elements for its inverse

• Sampling perturbed background latent vectors:

• Recall from VAE:

• What we do:
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Single observation experiments in midlatitudes

• Example: observation above Ljubljana, Slovenia (46.1°N, 14.5°E)

• Background for 2019-04-15

• Preset observation departure 
and standard deviation
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• Increment peaks at the observation location

• Increment stretched in SW-NE (typical SW winds)

• Positive increment surrounded by a shallower negative increment (spatial 
translation of synoptic Rossby waves typical for climatological B matrices 
(Fisher, 2003))

• Increments further away have negligible magnitude

• σa significantly reduced with respect to σb only in the area of the positive increment
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Single observation experiments in tropics
• Example: observation above Eastern Equatorial Pacific (0°N, 85°E) ( ,                 ) 

• ENSO pattern

• Weak increment as

• Same magnitude of increment in tropics and midlatitudes as σb in the midlatitudes is much greater than in the 
tropics (climatological B matrix (Fisher, 2003))  

• σa/σb reduction elongated towards W (lower branch of Pacific Walker circulation)
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Single observation experiments: multivariate case (Z200, u200, v200) 

• Ljubljana

• Observed

• Top row:        
Correlation and cross-correlation 
functions derived using the 
geostrophic increment 
assumption (from Kalnay, 2003)
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VAE alternatives

• The advantages of VAE over standard AE:

• Gaussian properties of the latent vector elements

• Smoothness of the latent space

• Downsides of VAE for our approach:

• Loss function: trade-off between reconstruction and regularization

• We do not need stochasticity

• Possible alternative: Probabilistic AutoEncoder (PAE) 
(Böhm and Seljak, 2022)

1. Train a standard AE (reconstruction)

2. Train a bijective transformation (normalizing flow, NF) from 
possibly non-Gaussian latent space z to Gaussian latent space u 
(regularisation)
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Probabilistic autoencoder (PAE)

• Similar structure of AE as in VAE + NF (RealNVP)
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Increment comparison – Ljubljana
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Increment comparison – Eastern Equatorial Pacific
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Conclusions and outlook

• We propose a neural-network-based method for variational data assimilation of atmospheric observations in a 
reduced-dimension latent space discovered by an autoencoder-like neural network

• We define a 3D-Var cost function in the latent space

• Bz  is shown to be quasi-diagonal

• Bz provides a unified representation of both tropical and extratropical covariances

• We aim to further extend this method to:

• multiple variables and levels,

• 4D-Var,

• using ensemble information to construct flow-dependent Bz which captures the errors associated with the 
current state of the atmospheric flow,

• represent smaller-scale balances
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Representation of temperature fields with VAE
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Quantitative evaluation for single observation experiments

• Example: observation above Ljubljana, Slovenia (46.1°N, 14.5°E)

• Theoretical analysis increment and standard deviation at observation location:

• Experimental results:
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