

Joint-Embedding Predictive Architectures with Domain-Aware Masking for Foundation Model Pretraining in Earth Observation

Ozan Arda Güven, Gencer Sumbul, Devis Tuia
Environmental Computational Science and Earth Observation Laboratory (ECEO), EPFL

Contact: gencer.sumbul@epfl.ch

Motivation and Aim

■ Foundation models based on Joint-Embedding Predictive Architectures (I-JEPA) [1] are effective at capturing rich semantic structures with minimal labelling, but their adaptation to Earth Observation (EO) remains challenging due to the complex nature of satellite imagery.

- I-JEPA, with its multi-block strategy, maintains spatial coherence for masking with random rectangular blocks. For satellite imagery:
 - * Key features (urban structures, roads) might be small or sparse
 - Large homogeneous areas (desert, ocean) are less informative
 - Contiguous big blocks miss subtle transitions (critical for EO)

■ For EO, domain-aware masking strategies are needed based on semantic importance rather than purely random blocks.

Methodology

- We propose four domain-aware patch-centric masking strategies, selecting patches to mask with high semantic significance based on different patch-level scoring schemes.
- 1) Variance Masking scores patches based on the variance of pixel intensities in each patch.
- 2) Embedding Masking scores patches based on distance across patch embeddings obtained from a pre-trained model.
- 3) Multi-Metric Masking scores patches based on the combination of variance, embedding distance, entropy, and edge density.
- 4) Informativeness—Representativeness Masking (IRM) considers inter-patch relations based on relevancy, hardness and diversity.

Variance (+) Simple/fast (-) Only transitions (-) External model Patch Scores Heatmap Multi-Metric (+) Robust (-) Computation (-) Computation (-) Computation

Results

■ We pretrained ViT-B and ViT-L based models with 100K RGB images from Functional Map of the World (fMoW) [2]. We applied k-NN (k=20), linear probing (LP), and finetuning (FT) for scene classification on EuroSAT [3] and RESISC-45 [4].

Masking Strategy		ViT-B		ViT-L	
		k-NN	LP	k-NN	LP
I-JEPA [1]	Multi-Block	95.7	97.7	93.1	97.0
Ours	Variance	95.6	97.5	95.0	97.4
	Embedding	96.3	97.8	95.1	97.7
	Multi-Metric	96.4	97.8	94.9	97.4
	IRM	96.2	97.2	95.8	97.9

Scene Classification Results on EuroSAT

Masking Strategy		ViT-B		ViT-L	
		LP	FT	LP	FT
I-JEPA [1]	Multi-Block	88.4	85.8	88.4	82.7
Ours	Multi-Metric	89.9	87.0	89.0	84.4
	IRM	89.9	87.2	89.5	86.0

Scene Classification Results on RESISC-45

Conclusion and Discussion

- Proposed domain-aware masking strategies not only outperform random multi-block masking for I-JEPA, but also allow encoding the EO-specific features more effectively.
- Model capacity and pretraining significantly influence the efficiency of the proposed strategies: smaller backbones converge faster, yet larger ones benefit from longer schedules.
- Our findings underscore the potential for adapting foundation models to complex EO data, especially by using domain-aware masking strategies for not only I-JEPA but also MAE.

References

[1] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat, Y. LeCun, and N. Ballas, "Self-supervised learning from images with a joint-embedding predictive architecture," IEEE/CVF International Conference on Computer Vision (ICCV), 2023, 2024, 2024.

[2] G. Christie, N. Fendley, J. Wilson, and R. Mukherjee, "Functional Map of the World," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6172–6180.

[3] P. Helber, B. Bischke, A. Dengel, and D. Borth, "EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019.
[4] G. Cheng, J. Han, and X. Lu, "Remote sensing image scene classification: Benchmark and state of the art," Proceedings of the IEEE. 105(10). 1865–1883. 2017.