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AMS glossary: (Sometimes called extratropical low, extratropical storm.) Any cyclonic-scale storm thatis not a
tropical cyclone, usually referring only to the migratory frontal cyclones of middle and high latitudes.
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“Cyclogenesis”: developing or strengthening of
a mid-latitude cyclone

“Cyclolysis”: cyclone decay

Some regions are especially prone to cyclone
formation:

Regions of strong temperature contrast

e.g., Continental coastlines (Atlantic, Pacific and
Mediterranean —in winter)

Gulf stream/Kuroshio current
Ice shelf versus sea in Arctic/Antarctic

Eastern sides of high mountain ranges —lee
cyclogenesis

A1A SI0. NOAA U S Navy, NGA GEBRCO
image © 2011 TermaMetncs
- -}




Storm-tracks: northern hemisphere B3 Reading

Track density Genesis
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units of number density per month per unit area, where the
Hodges et al. (2011) unit area is equivalent to a 5° spherical cap (~10°% km?).



Embedded mesoscale features

(b) Wind gust

Features caninclude....

= Multiple rainbands

Stacked slantwise circulations
Cloud top striations

Cloud heads with substructure
Inertia-gravity waves in the
region of tropopause folds
Sting jets, tornadoes, and
derechoes

These features can all cause
localised regions of extreme wind
speeds/qgusts and precipitation
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B exceptional use of radar techniques,
especially Doppler radar, to elucidate the
structure and evolution of precipitating
cloud systems. Performed first detailed
study of a supercell thunderstorm —in
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Fronts........
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Warm Front

Nimbostratus
(Ns)

Warm

front - Moderate precipitation

(a) Warm front, stable air

© 2013 Pearson Education, Inc.
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Cold Front B3 Reading

~ . Cumulmlmbus Cb) Cirrus (CI)
Wind

© 2013 Pearson Education, Inc.
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Frontal cyclone structure (during frontal fracture) B8 Reading

Shallow moist zonée /

fromdry |ntru5|on
air with low 0,
overrunning
boundary layer air
with high 0, 002

Sharp
surface
cold front

1000

Diffuse —

surface N q

cold front

T

——

Upper cold
front —
marks
leading edge
of dry
intrusion



Ana and kata (cold) fronts B3 Reading

Bergeron (1937) suggested the
introduction of the names ana front and
kata front to distinguish between fronts
at which there was general upsliding of
the warm air and those for which
descent occurred at all but the lowest
layers.

Specifically, for vertical velocity, w, and
along-front wind component, v,

(o)

Ana:  Wwarm = Weold (Vwarm > Vcold)
Kata:  Wyarm < Weord (Vvarm < Veold )

(b)

Surface cold tront Warm Frontal surface



Ana and kata (cold) fronts
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Ana and kata fronts are usually associated with different stages in the development of a
cold front; an ana front is usually the initial state but develops into a kata front later on,

as the depression becomes more occluded.

University of

Reading
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Rainbands

= Mesoscale rainbands are a common
feature of extratropical cyclones.

* |[n analysis of 11 cases Houze et al.
(1976) found 6 types: warm frontal,
warm sector, cold frontal-wide (50-
km wide), cold frontal-narrow (5-km
wide), wavelike (10-20-km wide) and
post-frontal.

= Typically, 5-50km wide and 100s km
long.

= Rainbands were contained small-
scale areas of especially
concentrated (10-500 km?) rainfall
that moved with the steering level
wind (850-700 hPa).

4N

©)

Both Single Band & Multi-bands

2-km AGL Refle;tivity . Objectively-identified Objects

2351 UTC
26 Dec 2010

Reflectivity (dBZ)

11 FORNRT 1T

304312592 28 32 36 40 44

Snowbands (scale <200 km) in NE US winter storm (and
objectively defined bands). Concurrent single and multiple
bands were most common, present for 55% of storm times,
and were usually in the NW quadrant of a mature cyclone.

From Ganetis et al. (2018)
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Hourly composite

2 n.-’ A

UK rainband example

Roin Rate (mm/hr)

Note: Multiple rainbands are also a From Browning et al. (2001)
common feature of tropical cyclones
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Stacked slantwise circulationsin
ana cold front.

= Vertical wavelength <2km

" Likely due to therelease of a
type of slantwise moist
instability called conditional
symmetric instability (CSl) ora
type of inertial adjustment
called Delta-M adjustment (M
for momentum).

" Processes leading to bands
often not resolved by numerical
weather prediction models due
to insufficient vertical
resolution.

0919

* '—"Wmm

-
|

Velocity (ms™') 80 60 40 20 0
Chilbolton radar range-height-indicator Doppler velocity scans (2 of 8).
The principle layers of slantwise ascent are fed by upright line convection.

From Browning et al. (2001)
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Rainband substructure |l

= The narrow cold frontal rainband can be broken up into lines
of weaker and stronger reflectivity corresponding to distinct
shallow convective line elements (precipitation cores).
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...1Ink to tornadoes

= Narrow cold frontal rainbands are an
important source of UK tornadoes

= UK tornadoes associated with narrow cold
frontal rainbands are often connected to

1. Developing secondary cyclones (frontal
waves) along trailing cold fronts

2. Strong mid-to upper-level jet streak
cutting across front within an amplifying
large-scale flow pattern (Clark and Parker
2020).

Conceptual model of shear-zone vortex

genesis in a developing frontal wave
From Clark et al. (2001)

Synoptic () Synoptic overview \
scale ')A/ ]/
(c) Open wave
[ 250k
] = (d) Frontal fracture
Meso-gamma ,
(b) Incipient . |
———— tomisoscale . Tornado
| 30km vortex genesis prone fd
= 2 h region
4// ) : ("‘:
, 3. Secondary
’ vortexgenesis, y
vortex mergers ¥ I
o and upscale 'ﬁ,‘; /
growth _ 0%
’ 4. Vortex dissipation,
1. NCFR formation and/or leaving step-like breaks
intensification / ' and elongating/narrowing
Narrow cold SeE
7 frontal ralnband £max and | ot
20k .
= strongwinds 'H
=~
+—
3 \—_;:
2. Primary ,X_
vortexgenesis due ‘ /\
. : to horizontal ’ I
Miso- shearing instability 4. /i
Scale Incipient secondary /1 km




European tornadoes

Tornado reports (not just those
associated with cyclones)
containedin the European
Severe Weather Database 1995-
2006.

Orange points are weak (FO, F1)
and unrated tornadoes; red
points are strong (F2, F3)
tornadoes; and black points
violent (F4, F5) tornadoes.

From Groenemeijer and Kiihne (2014)
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Cloud striations

= Cloud-top striations can be visible within
mesoscale cloud features associated with
ana-cold frontal circulations and (multiple)
cloud heads.

= May be due to convective rolls forming
above a frontal zone.

= ~parallel to wind shear at cloud top but
perpendicular to strong thermal-wind shear
in underlying frontal zone.

= Often associated with rapid cyclogenesis
and gusts

From Dixon et al. (2000)
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The elevator-escalator warm-frontal ascent model

Warm southerly airstream (flat, lightly stippled arrows) rises over the cold easterly polar
airstream (tubular dashed arrow). Meso-convective ascent (the elevator, solid arrows)
and convective clouds (stippled with white anvils) are shown at regular intervals
between regions of gentler ascent (the escalator).
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(b)

60°N

(c)

60°N

~ 50°N 50° N

1915

40°N 40°N

—-560 —500 —440 —-380 —320 —260 —200 —140 -80 -20
Apyp [hPa]

time Warm conveyor belt ascent for Cyclone Vladiana.

Coloursindicate 2 h pressure change along ascending WCB trajectories.
Grey contours —sea level pressure and red contour 2 PVU at 320 K.

From Ortel etal. (2020)
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Sting jets

" Transient (few hours), mesoscale (~50km spread) jets
of air descending from the tip of the hooked cloud
head in the frontal fracture regions of some
extratropical storms.

= Can cause damaging winds (and especially gusts).

= Coined 'the sting at the end of the tail by Browning
(2004)" in his study of the Great October storm of
1987.

= Since then large body of work performed on
modelling, mechanisms and climatologies.

= First research aircraft flight into a sting jet storm led
by Reading scientists within DIAMET project:
Windstorm Friedhelm in 2011 (Baker et al. 2013,
Martinez-Alvarado et al. 2014, Vaughan et al. 2015).

= Term has now entered common usage(?)




The zoo of sting-jet case studies

Storm name

Great Storm

Oratia

Anna

Jeanette

Gudrun /Erwin
Unnamed

Friedhelm

Ulli

St Jude’s Day / Christian
Tini

Storm date
October 16, 1987

October 30, 2000
February 26, 2002
October 27, 2002
January 7/8, 2005
December 7/8, 2005
December 8, 2011
January 3, 2012
October 28, 2013
February 12. 2014

Impact location

Southern England

Wales and central England

Central UK
Wales
Northern UK
East of Canada
Scotland
Northern UK

Southern England

Ireland, Wales., NW England

@ University of
Reading
Reference

Browning (2004); Browning and Field (2004): Clark et al. (2005);
Gray et al. (2011)

Browning (2004): Browning (2005)
Martinez-Alvarado et al. (2010); Gray et al. (2011)
Parton et al. (2009)

Baker (2009): Gray et al. (2011)

Schultz and Sienkiewicz (2013)

Baker et al. (2013); Martinez-Alvarado et al. (2014a)
Fox et al. (2012); Smart and Browning (2014)
Browning et al. (2015)

Slater ef al. (2017):Volonté ez al. (2018)

Unnamed 2/3 December 2012 Black Sea and east Romanian coast Brancus etal. (2019)

Egon 12/13 January 2017 France to Poland Eisensteinetal. (2019)
Eunice February 18,2022 Southern England Volonté et al. (2023a,b)
Ciaran November 2,2023 Southern England/France Charlton-Perez et al. (2024)

Our understanding of sting jet dynamics has advanced considerably since their first identification, but mostly
through analysis of case studies of cyclones crossing the North Atlantic to affect northwest Europe



Examples: Mediterranean

48°N —

a) 0130 UTTC
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Relative Humidity (%)

‘ 700 hPa RH and 925 hPa
wind speed
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36°E

Strongest near-surface winds > 45 m/s lasted 2-4 hrs
and were due to a descending SJ.
Later cold sector wind maximum was due to the CCB.
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Examples: UK

= Storm Eunice (Storm Zeynep in Germany) in Feb. 2022 was a well forecast, intense and

damaging windstorm.
= Two main regions of strong low-level winds (>42 ms™?).

* The more westwards region was associated with a CCB jet.

= There was evidence of mesoscale instability presence/release (CSI/SI) in the cloud head tip: this will have
strengthened the SJ.
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Conceptual model B3 Reading

Cloud head

Pre-existing strong
winds due to
balanced flow.

Ageostrophic
frontal descent

CSl-unstable
region extending back
into cloud head in

narrow, along-wind bands.
Possible narrow Sl/ll-unstable
regions.

- 1500-1500 km} >

Balanced descent
associated with

frontolysis Narrow SJ
reaches surface

Review by Clark and Gray (2018)
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: - Conceptual model of a Shapiro-Keyser cyclone
(b) .
A
Mesoanalysis of
peak surface DI
wind gustsin
Great October | 6-10 km]
1987 storm
//
U
\ | \‘\
- 1500-1500 kml -
Mesoscale features are often associated with strong winds and gusts e.g., WJ -warm jet
A: localised areas of strong gusts associated with cumulonimbus clouds CJ-coldjet
ahead of cold front 2. SJ-stingjet

CFC —cold frontal convection

B: localised areas of strong gusts associated with shallow non-
CS —cold sector convection

precipitating clouds in dry slot behind cold front 2.
C:large region of v. strong winds in dry slot (sting jet).
D: strong winds due to cold conveyor belt jet.
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Mesoscale wind features —O\y / /BYBIBLL £ s
Widespread convectively induced windstorms, b
called squall lines or derechoes are associated with 7
long swaths of damaging winds can also occur o
associated with intense surface cyclones.
* In Kyrilland Emma (right), damaging winds were 0 e b3

reported over a distance of 1500 km and locally T~ Bl L e —

reached F3 intensity 184Jan., 2007 18UTC ¢ L+ 5 o~ [

* Both derechoes formed along cold fronts that were
affected by strong quasi-geostrophic forcing.

* A derecho is defined as a family of downburst
clusters produced by an extratropical convective
system (Johns and Hirt, 1986).

Boxes are reports of gusts >25m/s
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Forecast skill and predictability: | B Reading

ECMWF HRes
ACC 500hPa geopotential height (12-month running mean)
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https://www.ecmwf.int/en/forecasts/charts



Forecast skill and predictability: Ii

Synoptic-scale: Errors of
tropical cyclone forecasts

5-day__JT l |
forecast %”’

3-day forecast for high™

resolution forecast (blue)
and ERAS5 (grey) compared
to observations

Errorsin speed and intensity

for 3-day forecasts

ECMWEF forecasts from
https://www.ecmwf.int/en/forecasts/charts

2008
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Forecast skill and predictability: IlI B8 Reading

T+12 radar forecast

a (®) jlobal
P5km
+ |+ [+ |+ |+ + 1+ |+ |+ |+
y + |+ |+ |+ |+ ++ |+ |+ |+
+ |+ + |+ |+ + [+ ]+ + |+
A
+ |+ [+ ]|+ |+ + |+ |+ |+ |+
Convective ‘
‘ + |+ |+ |+ |+ + |+ [+ |+
scale — ol
. |0 250km|° .t L 4 :
|SO|ated ( )TL '_'12 T S . A — { i *-I-+9
c) [+ e TV o BRI I
showers e I\ e » X
|\ 4km | -
T 1, 6/25 0, 6/25

Neighbourhood verification methods
(Roberts and Lean, 2008)

Clark et al. (2016)
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Studies have consistently revealed upscale error growth across multiple scales.
e.g., from using identical twin experiments
" 0-12 hr: dominated by differences in the convection scheme

" 0.5-2 days: differences in the upper-tropospheric divergent wind then project these
diabatic errors into the tropopause region

= 2-14.5 days: governed by differences in the nonlinear near-tropopause dynamics
= Up to 18 days: error growth from the synoptic up to the planetary scale.



Summary

= Cold fronts can be classified as Ana or Kata depending on whether there is
general upsliding of warm air (ana) or descent in all but the lowest layers
(kata).

= Rainbands can have a wealth of associated mesoscale features: multiple
bands in the horizontal, stacked vertical layers, distinct precipitation cores,
tornadoes, derechos, cloud head striations.

= Line convection can be followed by slantwise convection aloft and upright
convection can be triggered by slantwise ascent: elevator-escalator model.

= Sting jets are transient (few hours), mesoscale (~50km spread) jets of air
descending from the tip of the hooked cloud head in the frontal fracture
regions of some extratropical storms.

= Predictability varies with scale with new approaches required to measure
mesoscale and convective predictability such as neighbourhood and object-
based metrics.

= Also, (nhot shown), arc rainbands can form in the dry slot of cyclones and
inertia-gravity waves can form associated with the upper-level jet.
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