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CAPTIVATE: key features

» Advantages of synergistic retrievals are well-
established:

MODIS true-colour image
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— radar-lidar synergy is greatest for ice cloud;
most other components rely on one or the
other active sensor
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9) MODIS infrared radiance

— But some measurements act as integrated
constraints with contributions from different
components of the atmosphere (radar PIA
from liquid cloud and rain; solar radiances
from ice and liquid cloud)
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» Advantages of a unified retrieval in complex
and layered cloud scenes
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— Mass flux conserved across the melting layer

— Mixed-phase/supercooled liquid layers
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— Drizzle/rain colocated with liquid cloud
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_ MODIS true-colour image
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CCM-CAP: Ice and snow

* Retrievals of optically thin ice at cloud-top are under-
constrained (lidar-only)

— Assimilating the radar noise floor provides an upper limit on
the forward-modelled radar reflectivity of ice clouds retrieved
from lidar-only measurements
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— Results in an overall reduction in effective radius compared
to previous retrievals (e.g. DARDAR), consistent with very
high-sensitivity airborne radar-lidar retrievals, but not
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CCM-CAP: Drizzle & rain

» Rain drop size distribution (DSD) scales as a function of rain rate (Abel & Boutle, QJRMS, 2012),
but can also retrieve deviations from this relation when constrained by observations

— PIA can provide a strong constraint on retrieving DSDs with high concentrations

of small drops in warm rain (Mason et al., ACP, 2017)

* Rain rate and liquid cloud both contribute to PIA

* Compared with CloudSat rain products

— PRECIP-COLUMN doesn’t resolve features within the profile

(e.g. evaporation or collision-coalescence), but is well-constrained by PIA

— RAIN-PROFILE has distinct attenuating and non-attenuating regimes
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CCM-CAP: liquid cloud
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* Retrievals of non-precipitating liquid cloud

closely resemble MODIS cloud retrievals
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» But it’s likely that a majority of liquid cloud
goes undetected by spaceborne radar-lidar
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— radar is sensitive to precipitating EO -
hydrometeors, while lidar is quickly
extinguished near cloud-top

— Missing liquid clouds have a strong
shortwave/solar radiance signal, so can’t be
ignored from a cloud-radiation perspective

— Have demonstrated some success by
coarsely represent missing liquid cloud with
the assumption that liquid cloud is colocated
with rain.
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CCM-RAD: radiative transfer at nadir

« CCM-CAP retrieved cloud and aerosol properties are inputs

to radiative transfer mode

« Radiative transfer model is the offline version of the ECMWF
forecast model’s fast and accurate radiation scheme, ecRad

(Hogan and Bozzo, 2018)

 Unlike the EarthCARE radiative product (ACM-RT), the
radiative transfer is currently run just at nadir, not across the

MODIS swath

« We also use CCM-CAP as the inputs for a more robust
radiative closure assessment across the MODIS swath using
the method of Barker et al. (2011), which underpins the
ACM-3D & ACM-RT products for EarthCARE

CCM-RAD
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CCM-RAD: radiative fluxes & heating rates
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* ecRad computes LW & SW radiative fluxes
through the atmosphere
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* Radiative heating rates calculated from net
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» Top-of-atmosphere (TOA) fluxes vs CERES
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« Assumption of liquid cloud in rain improves
shortwave fluxes at TOA, but drastically changes
heating rates in the lower atmosphere

— Cloud base height assumption from spaceborne
radar-lidar could be evaluated using surface
fluxes
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CCM-RAD: radiative closure

» With coarse distinctions between cloud regimes; more
careful selection could be made to target specific processes

» Radiative closure assessment provides a built-in evaluation
of biases in the radiative properties of clouds retrieved by
CCM-CAP. This can be used to quantify improvements,

e.g. in microphysical properties of ice clouds

* Increased noise attributed to inherent mismatch between
the ~1km scale of CloudSat-CALIPSO measurements and
the ~20km CERES footprint.

— Should be substantially reduced by carrying out across-track
radiative closure assessment (Barker et al. 2011 & ACM-RT)

* SW closure more challenging than LW
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Summary

- CCM-CAP: unified and synergistic retrieval of clouds, « Paper and initial dataset to follow

aerosols and precipitation from the A-Train

— Advantages over a patchwork of single-instrument and
synergistic retrievals, especially in complex and layered
scenes

— Continuity with EarthCARE synergistic retrievals
— Current applications:
« Testing and development of EarthCARE synergistic retrievals
« Evaluation of ECMWEF integrated forecast system
* Forward-modelling of novel microwave/radar sensors
« Downstream products: radiative fluxes and heating rates

— CCM-RAD at nadir using ECMWF radiation scheme;
Radiative closure vs CERES provides a built-in evaluation
of CCM-CAP

— Also providing CCM-CAP as input to 3D radiative transfer
methodology (Barker et al.

o)
A~ 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Starting with 1 year of A-Train data (2008)

To expand to first 5 years of A-Train (2006 to
2011); period of optimal CloudSat-CALIPSO
performance

Looking for users!
Contact shannon.mason@ecmwf.int
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