



# Assessment of Aeolus L2B products with the LATMOS RALI airborne platform

Cazenave Q., J. Delanoë, C. Flamant, S. Bounissou, H. Collomb and C. Caudoux

LATMOS - IPSL

3rd Aeolus NWP Impact and L2B product quality working meeting, Webex, 1 December 2021

ESA UNCLASSIFIED – For ESA Official Use Only

UNIVERSITE PARIS-SAC

## The SAFIRE F20 payload for wind measurements





#### RASTA - 95 GHz

mono-static, pulsed system (1.6kW) : sensitivity ~-40dBZ@1km 4 antenna-system (1 up and 3 down)

**Measurements** (int 250 ms/every 1s/60m):

Z, V, Doppler spectrum

>> Cloud wind below the aircraft (combining the 3 antennas)

#### LNG lidar - 355/532/1064nm

**High spectral resolution Doppler** polarised lidar at 355nm 3 possible lines-of-sight: nadir, zenith or **37°off nadir (Aeolus-like)** 

Measurements (5s-50s /6m):

Backscatter at 355/532/1064 nm, Polarisation at 355, **line of sight velocity of aerosol and cloud particles at 355nm**, Molecular backscatter at 355nm

Dropsondes (Vaisala, Aspen QC)  $\rightarrow$  horizontal wind profiles

F20 in-situ wind at aircraft altitude

### Datasets





#### CADDIWA, 8 – 19 Sept. 2021 Cape Verde (Sal International Airport)

5 flights with Aeolus underpasses 13 DS

Aeolus B12, 3 ascending orbits and 2 descending orbits

RALI targets: SAL, boundary layer clouds and aerosols, mid-level clouds



08/09 The only case with RASTA

### Datasets





#### CADDIWA, 8 – 19 Sept. 2021 Cape Verde (Sal International Airport)

5 flights with Aeolus underpasses 13 DS

Aeolus B12, 3 ascending orbits and 2 descending orbits

RALI targets: SAL, boundary layer clouds and aerosols, mid-level clouds

LNG 50s (~10km) resolution for higher SNR



08/09 The only case with RASTA



#### CALVAL Aeolus 2019, 16 – 27 Sept. 2019 & 5 – 7 Nov. 2019 France (Toulouse Francazal Airport)

9 flights with Aeolus underpasses5 exploitable flights for RALI – Aeolus Mie comparisons22 dropsondes (DS)

Aeolus B06 and B10, 2 ascending orbits and 3 descending orbits

RALI targets: low-level, mid-level and high-level clouds

### **Datasets – a few statistics**





### **Datasets – a few statistics**





\*

### **Datasets – a few statistics**





## F20 payload cross-validation





## **Comparison with DS – methodology example**





→ THE EUROPEAN SPACE AGENCY

\*

## **Comparison with RALI – methodology example**





## Comparison with RALI – methodology example (2)

2021-09-10 Ascending

LNG HLOS measurement corrected from difference with Aeolus azimuth angle (Lux et al. 2020):

> $\Delta HLOS$  $= [\sin(Az_{LNG}) - \sin(Az_{Aeolus})] * u$ +  $[\cos(Az_{LNG}) - \cos(Az_{Aeolus})] * v$

 $(u, v) \rightarrow \text{ERA5}$  hourly horizontal wind information

RASTA wind retrieval validation using F20 in-situ winds, DS and ERA5.



20

20

10 0

-10

-20

-30

20

-10

-10

-20

-30

20

10

-10

-20

-30

20

20

19

19

## Main results from comparison with dropsondes



|     |       | Bias (m/s) |       | Stan<br>dev. | dard<br>(m/s) | Scaleo<br>(m | d MAD<br>/s) | Counts |     |   |
|-----|-------|------------|-------|--------------|---------------|--------------|--------------|--------|-----|---|
|     |       | B06        | B10   | B06          | B10           | B06          | B10          | B06    | B10 |   |
| RAY | asc.  | -3.03      | -1.29 | 3.57         | 4.23          | 3.64         | 3.84         | 62     | 69  | C |
|     | desc. | 1.45       | 1.5   | 4.84         | 4.88          | 4.4          | 4.7          | 94     | 100 |   |
| MIE | asc.  | -0.21      | -1.21 | 2.31         | 4.16          | 3            | 2.55         | 18     | 24  | a |
|     | desc. | 0.99       | 0.25  | 3.59         | 3.51          | 2.43         | 3.56         | 19     | 29  | L |

#### New baseline

- More data available ← reduction of estimated random error

- Reduction of bias for rayleigh ascending orbits

+

Scaled MAD = 1.4826 x MEDIAN( | (Aeous – DS) – MEDIAN(Aeous – DS) | )

## Main results from comparison with dropsondes



|     |                | Bias       | (m/s)        | Standard<br>dev. (m/s) |             | Scaled MAD<br>(m/s) |              | Counts |     | New baseline<br>- More data available ← reduction                                                             |  |
|-----|----------------|------------|--------------|------------------------|-------------|---------------------|--------------|--------|-----|---------------------------------------------------------------------------------------------------------------|--|
|     |                | B06 B10    |              | B06 B10                |             | B06                 | B06 B10      |        | B10 |                                                                                                               |  |
| DAV | BAV asc.       |            | -1.29        | 3.57                   | 4.23        | 3.64                | 3.84         | 62     | 69  | of estimated random error                                                                                     |  |
| KAI | desc.          | 1.45       | 1.5          | 4.84                   | 4.88        | 4.4                 | 4.7          | 94     | 100 | - Reduction of bias for rayleigh                                                                              |  |
|     | asc.           | -0.21      | -1.21        | 2.31                   | 4.16        | 3                   | 2.55         | 18     | 24  | ascending orbits                                                                                              |  |
|     | desc.          |            | 0.25         | 3.59                   | 3.51        | 2.43                | 3.56         | 19     | 29  |                                                                                                               |  |
|     |                | Bias (m/s) |              | Standard<br>dev. (m/s) |             | Scaled MAD<br>(m/s) |              | Counts |     | New campaign and new baseline                                                                                 |  |
|     |                |            | B12          |                        | B12         |                     | B12          |        | 12  | inter sampaign and new saconite                                                                               |  |
| DAV | RAY asc. desc. |            | 0.73<br>0.72 |                        | 7.67<br>8.8 |                     | 8.51<br>8.89 |        | 60  | <ul> <li>Reduction of bias for rayleigh</li> <li>Increase in standard deviation<br/>and scaled MAD</li> </ul> |  |
| RAT |                |            |              |                        |             |                     |              |        | 38  |                                                                                                               |  |
|     | asc.           | asc0.64    |              | 2.59                   |             | 1.53                |              | 10     |     |                                                                                                               |  |

4.63

4

#### 

4.12

1.4

MIE

desc.

\*



|       |       | Bias (m/s) |       | Standa<br>(m | rd dev.<br>/s) | Scaleo<br>(m | d MAD<br>/s) | Counts |     |
|-------|-------|------------|-------|--------------|----------------|--------------|--------------|--------|-----|
|       |       | B06        | B10   | B06          | B10            | B06          | B10          | B06    | B10 |
|       | asc.  | -1.60      | -1.32 | 4.20         | 3.61           | 3.52         | 3.97         | 56     | 76  |
| LNG   | desc. | -0.08      | 0.45  | 4.42         | 5.42           | 4.15         | 4.92         | 45     | 96  |
| DACTA | asc.  | 0.69       | 0.36  | 3.721        | 3.18           | 2.64         | 3.64         | 45     | 72  |
| KASTA | desc. | 2.88       | 2.32  | 8.98         | 8.41           | 3.36         | 5.34         | 35     | 85  |

New baseline

→ No significant improvement



|       |       | Bias (m/s)        |       | Standard dev.<br>(m/s)        |      | Scaled MAD<br>(m/s)        |      | Counts        |     |                                                                               |  |
|-------|-------|-------------------|-------|-------------------------------|------|----------------------------|------|---------------|-----|-------------------------------------------------------------------------------|--|
|       |       | B06               | B10   | B06                           | B10  | B06                        | B10  | B06           | B10 | New baseline                                                                  |  |
|       | asc.  | -1.60             | -1.32 | 4.20                          | 3.61 | 3.52                       | 3.97 | 56            | 76  | $\rightarrow$ No significant                                                  |  |
| LNG   | desc. | -0.08             | 0.45  | 4.42                          | 5.42 | 4.15                       | 4.92 | 45            | 96  | improvement                                                                   |  |
| DACTA | asc.  | 0.69              | 0.36  | 3.721                         | 3.18 | 2.64                       | 3.64 | 45            | 72  |                                                                               |  |
| RASIA | desc. | 2.88              | 2.32  | 8.98                          | 8.41 | 3.36                       | 5.34 | 35            | 85  |                                                                               |  |
|       |       | Bias (m/s)<br>B12 |       | Standard dev.<br>(m/s)<br>B12 |      | Scaled MAD<br>(m/s)<br>B12 |      | Counts<br>B12 |     | New campaign - Even less data - Inconsistent bias values for ascending orbits |  |
|       |       |                   |       |                               |      |                            |      |               |     |                                                                               |  |
|       | asc.  | 1.92              |       | 7.93                          |      | 7.6                        |      | 40            |     |                                                                               |  |
|       | desc. | -0.79             |       | 2.64                          |      | 2.76                       |      | 34            |     | Similarly low bice for                                                        |  |
| DACTA | asc.  | /                 |       | /                             |      | /                          |      | 0             |     | descending orbits                                                             |  |
| RASTA | daga  | -1.3              |       | 1.32                          |      | 1.75                       |      | 4             |     |                                                                               |  |

\*





#### Comparing B06 and B10 on the 2019 data

**B06** 



**B10** 

Different wind conditions between ascending and descending orbits  $\rightarrow$  possible reason for the differences





#### Same results for the Cape Verde dataset (2021)



 $\mathbf{k}$ 

÷

\*





#### Same results for the Cape Verde dataset (2021)



The flights performed during the CADDIWA campaign cannot provide sufficient data for quantitative Aeolus L2B assessment





- Bias reduction for Rayleigh channel with new baseline (but larger variability)
- No significant impact on Mie channel
- Probable influence of wind intensity on Mie channel performance (but not enough data to confirm this hypothesis)
- Atmospheric conditions during the CADDIWA campaign not satisfying to assess L2B Mie products
  - Aeolus not sensitive enough to detect aerosol layers at the Mie resolution
  - High altitude cirrus clouds shadowing the SAL, too high for the F20



## THANK YOU FOR YOUR ATTENTION



Seed questions for Aeolus L2B product quality working meeting 2021 I. Krisch, A. Geiss, S. Kheykin, S. Bley

### **Questions related to L2B product quality**



- Did you recognize differences in the L2B data quality (systematic and random errors) throughout the mission lifetime (FM-A, FM-B)?
- Does your analysis indicates improvements after M1 bias correction (all datasets after B09, including reprocessed)?
- Did you assess the quality of the reprocessed dataset B11 from June 2019 October 2020?
- Have you noticed range-bin dependent, orbital phase, geographical, temporal wind biases?
- Enhanced orbital dependent biases found in March & October (likely due to increased solar background noise)
  - $\rightarrow$  Evidence also found in comparison to measurements?
- What is the spatial representativness of Aeolus Rayleigh/Mie winds?
- Which QC filters have you used and did you change them during the mission?
- Have you compared the HLOS estimated error, provided in the product, to random errors (scaled MAD) found in your cal/val comparisons?
- Comparison to AMVs: Did you compare L2B Mie cloudy winds to AMVs for the special RBS period (November 2019)?

#### **Recommendations for the future**



- Do you have recommendations for future operations (for upcoming reprocessing campaigns, scene classification in clear, cloudy)?
- Do you have recommendations for special range bin settings?
- Are there any ideas/needs/potential for L3 products (different grids, global maps/statistics)?
- Recommendations for Aeolus follow-on mission?