

Improving global SO₂ emission inventories using Sentinel-5P TROPOMI satellite data

Adrian Jost¹, Steffen Beirle¹, Christian Borger^{1,2}, Nicolas Theys³, Steffen Ziegler¹, and Thomas Wagner¹

1Max Planck Institute for Chemistry, Satellite Remote Sensing, Mainz, Germany

²ECMWF, Bonn, Germany

³Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

ESA UNCLASSIFIED – For ESA Official Use Only

World Emission project

- ESA-funded project which kicked-off in March 2022
- aims to enhance pollutant and greenhouse gas emission inventories using satellite data
- catalog was submitted and is published
 - scan QR code or visit <u>https://www.world-emission.com/</u>
 - updated version will be provided

This study: Identify and quantify anthropogenic SO₂ point sources (ps)

WorldEmission

SO₂ catalog!

Input data

1. TROPOMI COBRA SO₂:

- data scatter is significantly reduced by a factor of about 2
- low detection limit allows for finding weak sources
- 2. ECMWF ERA5 winds:
 - May 2018 July 2022, global, 0.25° & 1h res.
 - interpolate \overrightarrow{w} (u & v wind components) to 500m
- 3. Auxiliary databases:
 - for classification: power plants, cities, volcanoes
 - for comparison: EDGAR, Fioletov et al., 2023

© ESA

© Theys et al., 2021

- 🚍 🔜 📕 🚍 🚍 🔚 📕 🚝 📕 📕 🚍 📲 🚝 🔚 🧮 🚍 🔤 🚱 🔽 🚺 💥 🔚 🖬 🚍 🚾 🔯 🖓 → THE EUROPEAN SPACE AGENCY

Advection method

• based on the divergence of the SO₂ flux (Beirle et al., 2019, 2021, 2023): $D = \nabla \cdot \overrightarrow{F} = E - S$

 $D = \nabla \cdot (\overrightarrow{w}V) = \overrightarrow{w} \cdot \nabla V + V \nabla \cdot \overrightarrow{w}$

- only consider the first term (flux changes caused by local SO₂ emissions)
- method yields sources/sinks on a map

Sample advection map

SO₂ advection [mol m⁻² s⁻¹]

1e-7

-2

Sample VCD map

Core algorithm (workflow)

- 1. creation of advection dataset
 - consists of several steps, e.g.:
 - data filtering
 - AMF correction
 - calculation of advection: $A = \overrightarrow{w} \cdot \nabla V$
 - topographic correction
 - calculation of temporal means
- 2. identification of point sources
 - fully automated iterative procedure searching for local maxima
- 3. quantification of point sources
 - spatial integration of the advection map around potential source
- 4. selection of significant point sources

Advection map (Matimba, SA)

Catalog

Global ps catalog

- 176 significant point sources globally
- catalog does not include volcanoes and area sources
- plenty of additional info about the source is provided, e.g.:
 - uncertainty
 - significant months
 - nearby power plants & cities
 - annual emissions
 - source type
 - source name

6

Comparison with EDGAR and Fioletov et al., 2023

- overall good agreement is found
- 1. comparison with Fioletov et al., 2023:
 - our emissions are on average 33% lower
 - different methodology but discrepancy has to be further investigated
- 2. comparison with EDGAR:
 - our emissions are on average 6% higher
 - comparison is quite limited:
 - A. only eight months overlap in 2018
 - B. EDGAR doesn't include many sources
 - C. EDGAR shows SO₂ emissions where TROPOMI sees none

SO₂/NO_x

information about used fuel and applied filtering measures can be inferred SO₂ to NO_x mass ratio: range: 0.8 to 66.2

• mean: 6.2

→ THE EUROPEAN SPACE AGENCY

Volcanoes

 121 volcanic signals have been detected (out of 710 total ps or area source candidates)

- in principle the algorithm can identify and quantify volcanic sources, however there are several problems, e.g.:
 - potential saturation in SO₂ fitting window
 - assumed plume height possibly wrong
 - wrong wind fields
 - unsuited AMF
 - temporal variability of emissions
- a more extensive algorithm is needed

Nishinoshima time series (Japan)

→ THE EUROPEAN SPACE AGENCY

Conclusions

- 176 anthropogenic point sources detected globally
- · catalog is made available by World Emission project and will be updated
- validation shows good agreement with independent emission estimates
 - differences will be investigated further
- comparison with NO $_{\rm x}$ catalog provides information on fuel type and filtering
- detailed global volcanic emission inventory would require much more work
- potential for (upcoming) geostationary satellites

####