
Advances in interactive
processing and visualisation

with JupyterLab on the
JRC Big Data Platform (JEODPP)

Davide DE MARCHI, Pierre SOILLE

European Commission, Joint Research Centre
Directorate I Competences, Unit I.3 Text and Data Mining

Big Data Analytics Project

Joint Research Centre (JRC)

Contacts: davide.de-marchi@ec.europa.eu
pierre.soille@ec.europa.eu

Big Data From Space 2019
19/02/2019, Munich

JEODPP conceptual representation

Current status of JEODPP platform

Based on:

• commodity hardware

• open-source software stack

Storage:
• CERN EOS distributed file system
• Currently 9 PB net capacity

Processing servers:
• 1,500 cores over 35 nodes
• 4 servers equipped with multi-GPUs and dedicated to

Machine Learning processing with TensorFlow, Keras, …

Interactive visualization
and analysis with JupyterLab

• Available for geospatial expert with some
programming capabilities

• Web interface to visualize
and analyze big geospatial
data

• Allows fast search and
display of complex dataset

• Allows easy creation of
GUI applications for non
programmers
(ipywidgets, ipyleaflet,
bqplot, qgrid, …)

New datasets available: ALOS AW3D30
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm

New datasets available: Sentinel-1

New datasets available: Global mosaics

JEO-lab software components

Tile
Engine

Python code injected server-side

Need to increase user flexibility and use available
python libraries

Solution: enable injection of custom python code to
the server-side Tile Engine running in the HPC

Function definition and function call are
converted to strings using python inspect module
(getsource and getcallargs functions)

For security reasons the list of available libraries is
limited but customizable on-demand (numpy, scipy-
ndimage, OpenCV, etc.)

Python code injected
server-side

For each tile requested by the
ipyleaflet map, the C++ server code
creates a python interpreter instance
(python embedding) and:

• executes in it the python function
definition

• creates a multi-dimensional
Numpy array and fills it with the
results obtained from the previous
steps of the precessing chain

• executes the python function call

• Reads the result returned by the
user function and passes it to the
next step of the chain

def maskpy(img, n):
return img[img<=n] = 0

An example: stubble burning mapping
Courtesy: JRC Directorate D Sustainable Resources, D.5 Food Security

• Deliberate setting fire of the straw stubble that
remains after wheat and other grains have been
harvested.

• The practice was widespread until the 1990s, when
governments increasingly restricted its use

• Many risks:

• Pollution from smoke

• Risk of fires spreading
out of control

• …

Detection of stubble burning from satellite images
using python code injected server-side

def stubble(img, v4, v6, v8, v11min, v11max):
b4,b6,b8,b11 = img[0],img[1],img[2],img[3]
res = numpy.ones_like(b4)
res[b4>=v4] = 0
res[b6>=v6] = 0
res[b8>=v8] = 0
res[numpy.logical_or(b11<=v11min,

b11>=v11max)] = 0
return res

p = coll.processMulti(["B04","B06","B08","B11"])
.execute(stubble,1000,1200,1200,500,1600)
.band(0).scale(0,1).colorCustom(["Lime"])

Function definiton that implements the stubble
burning algorithm:

Multi-band processing chain containing the python function call:

B04 < 1000 AND
B06 < 1200 AND
B08 < 1200 AND
B11 > 500 AND
B11 < 1600

Stubble burning
detection for
Sentinel2:

Detection of stubble burning from satellite images
using python code injected server-side

Rule based cloud detector
implemented in numpy

Credits:
Dario Simonetti,
JRC, doi:10.2760/790249

http://forobs.jrc.ec.europa.eu/recaredd/S2_composite.php

Multi-Temporal Maximum-NDI composition

Easy comparison with the split map control

Georeferenced temporal videos

Widgets enabled applications: s2explorer

Extraction of NDVI temporal profile

Takeaway message

• Versatile Big Data platform serving wide variety of
projects

• Importance of Copernicus temporal resolution for
many different applications (agriculture, forest,
disasters, etc.)

• Suitable for experienced scientists and also for final
users

• With the server-side injection of python code, the
interactive visualization is even more flexible and
open and allows fast prototyping of batch mode
processing

Thank you for your attention!

Big Data Analytics project

Unit I.3 Text and Data Mining Unit
Directorate I Competences

GEO-WEEK, Washington DC, Oct 2017

https://doi.org/10.1016/j.future.2017.11.007

Publication list:
https://cidportal.jrc.ec.europa.eu/home/publications

https://doi.org/10.1016/j.future.2017.11.007
https://cidportal.jrc.ec.europa.eu/home/publications
https://doi.org/10.1016/j.future.2017.11.007

	Slide Number 1
	JEODPP conceptual representation
	Current status of JEODPP platform
	Interactive visualization �and analysis with JupyterLab
	New datasets available: ALOS AW3D30�http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
	New datasets available: Sentinel-1
	New datasets available: Global mosaics
	JEO-lab software components
	Python code injected server-side
	Python code injected server-side
	An example: stubble burning mapping�Courtesy: JRC Directorate D Sustainable Resources, D.5 Food Security
	Detection of stubble burning from satellite images using python code injected server-side
	Detection of stubble burning from satellite images using python code injected server-side
	Rule based cloud detector implemented in numpy
	Multi-Temporal Maximum-NDI composition
	Easy comparison with the split map control
	Georeferenced temporal videos
	Widgets enabled applications: s2explorer
	Extraction of NDVI temporal profile
	Takeaway message
	Thank you for your attention!

