

Comparison of land surface albedo between MODIS and ground-based measurements at the Thule High Arctic Atmospheric Observatory (THAAO) in Pituffik, Greenland

M. Tosco⁽¹⁾, D. Meloni⁽²⁾, F. Calì Quaglia⁽³⁾, G. Muscari⁽³⁾, G. Pace⁽²⁾, A. di Sarra⁽⁴⁾ (1) Ca' Foscari, Venice ; (2) ENEA, Casaccia (RM) ; INGV, Roma (RM) ; ENEA, Frascati (RM)

INTRODUCTION - OBJECTIVES

Greenland, was conducted. The main objective was to assess how the satellite instruments are capable to evaluate the rapid albedo changes in polar areas.

INSTRUMENTS AND SITE	RESULTS	
Ground based observations are made at the Thule High Arctic Atmospheric Observatory (THAAO, 76.52° N, 68.76° W, 220 m asl) in Pituffik, North Western Greenland. A Kipp and Zonen CMP21 radiometer is used to measure the solar downward irradiance, while an Eppley PSP monitors the upward solar irradiance (Figure 4). The radiation measurements are traceable to the World Radiation Reference scale. Observations from MODIS sensors, installed on Terra and Aqua satellites, were used. MODIS albedo is provided at a spatial resolution of 500 m, and as an average value over a period of 16 days. Data from July 2016 to October 2023 are used in the comparison.	 Two main analyses were conducted: Albedo retrieved in all-sky conditions (without any filtering on clour compared. The results for year 2023 are shown in the Figure 1a. For ground-based values of albedo were averaged over a period of 16 da values. Data for clear-sky conditions were selected: the MODIS Quality Flazero) were used to select satellite data, while a cloud screening algo pyrometer data (Pace et al., 2024) was applied to the ground-based the year 2023 are presented in Figure 1b. In both figures uncertainties on albedo determination from ground-based 	or better comparison, the ays, similarly to MODIS ags (all quality flags equal to withm based on zenith sky observations. The results for
1.0 	in grey. The albedo obtained in the other years presented the same seasonal tren during spring and lower values during summer. Better agreement betwe	nd, with higher values

colour of the ground.

Figure 2: selection three diff km². The

Figure 2: the first analysis conducted in this work was the selection of the area for the satellite observations. In first place three different sizes were considered: 1 km^2 , 4 km^2 and 16 km^2 . The area selected for the comparison is the smallest one.

Comparison of MODIS and THAAO values of albedo for the year 2023 for clear-sky conditions 1.0 MODIS THAAO 0.8 0.6 Albedo 0.4 0.2 0.0 + 2023-02 2023-03 2023-04 2023-10 2023-05 2023-06 2023-07 2023-08 2023-09 Time

Figure 1: comparison between MODIS and THAAO daily values of albedo for clear-sky (a) and all-sky (b) conditions.

All Sky Conditions			Clear Sky Conditions				
	Spring	Summer	Autumn		Spring	Summer	Autumn
MODIS	0.6079	0.1913	0.3301	MODIS	0.5485	0.1634	/
THAAO	0.7050	0.2025	0.4663	THAAO	0.7085	0.1872	0.5132

Figure 3: Annual evolution of the daily average surface albedo values from 2016 to 2022. The upper *x* axis indicates the minimum SZA for each month. (Meloni et al., 2024)

based values is found during the summer season when the melted snow leads to the homogeneous

THAAO observatory in Greenla https://www.thuleatmos-it.it

CONCLUSIONS

Selecting an area of 1 km² for the satellite observations (selection shown in Figure 2):

- MODIS is capable to evaluate a good value of albedo compared to the groundbased observation, even on cloud conditions when the MODIS algorithm is used;

MODIS - THAAO	0.0971	0.0112	0.1362	MODIS – THAAO	0.1601	0.0229	

Table 1: Seasonal averaged values of albedo for ground-based observations (THAAO) and satellite observations (MODIS) averaged over the eight years period considered (2016-2023). The low amount of data available for the comparison of clear-sky analysis (157 days over 2922 of total days), specially during spring season (shown in yellow), leads to high differences on the comparison.

- The annual trend of albedo is well shown in both analyses;

- A further analysis on clouds and other meteorological parameters will be conducted in future works

REFERENCES

- G. Pace et al., (2024), doi.org/10.5194/amt-17-1617-2024
- D. Meloni et al., (2024), doi.org/10.5194/essd-16-543-2024
 - https://search.earthdata.nasa.gov/search

Figure 4: Kipp and Zonen CMP21 are showed in figure a, Eppley PSP are showed in figure b and the pyrgeometer is shown in figure c

∢

Universitä

Ca'Foscar

Venezia

• •