

Validation of EarthCARE Doppler velocity measurements in rain *Dmitri Moisseev*^{1,2}, *Miguel Aldana*², *Bernd Mom*¹, *Mario Montopoli*^{3,4} *Alessandro Bracci*³, *Elisa Adirosi*³ and *Luca Baldini*³ ¹*Univ. of Helsinki, Finland;* ²*FMI, Finland;* ³*CNR- ISAC, Italy;* ⁴*CETEMPS, L'Aquila, Italy*

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

12

11

10

9

5

- ACTRIS cloud profiling stations in Finland and simulated overpasses within 100 km from the stations
 - Stations are equipped with W-band or Ka-band cloud radars + other sensors
 - Well-suited for EarthCARE cal/val (see EVID05 presentations, O'Connor, Pfitzenmaier, and Feuillard)
- FMI weather radar network
 - Consists of 12 C-band radars
 - Circles around radars indicate distances at which radar beams are expected to go above cloud tops (in winter and summer)

University of Helsinki Hyytiälä station

- Detailed characterization of precip microphysics in combination with weather radar observations, can be used to create spatial datasets suited for satellite cal/val (e.g. von Lerber et al 2018)
- Use dual-polarization radar observations to estimate W-band reflectivity weigthed mean fall (sedementation) velocity of raindrops
- The relations are computed from disdrometer observations
- The uncertainty of the V_w (Z, Zdr, Kd/Z) relations increases for larger V_w, because of Mie scattering effects in W-band

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

		П	

Stratiform rain

Convective rain

- To verify validity of the derived relations combination of C-band observations and Wband cloud radar measurements were used
- C- and W-band radars are collocated and are vertically pointing
- In the stratiform rain there is a good agreement between estimated and measured V_w
- Some differences due to air motion

Retrieved W-band velocity

Observed W-band velocity

EarthCARE overpass on 01 August 2024

C-band Radar Reflectivity

(c)

64

56

48

Reflectivity [dBZ]

10. Utajärvi

Radars within 80 km from the track are selected

Radar: PET, task: A, timestamp: 2024-08-01 13:15:00

- For R < 80 km, the radar beam should be below melting layer
- This is verified bythe hydrometeor classification

- Z <10 dBZ are filtered out</p>
- There is no good estimate of W-band MDV for Z <10 dBZ

 Hydrometeor classification is used to remove non rain echoes

Velocity comparison

- The overal agreement is very good
- Mean difference is less than 0.25 m/s
- Note our estimate does not include air motion

 Signatures of Doppler folding occur in heavy precipitation cores in attenuated CPR regions

+ air motion

Summary

JAXA Cesa

- Weather radar observations can be used to asseess CPR Doppler measurements
- Weather radar retrieved Doppler velocity is the sedementation velocity and does not include air motion; mainly applicabale to stratiform rain cases
- Our analysis shows good agreement between CPR MDV and our estimate (mean difference is about 0.21 m/s)

JAXA Cesa

Bias -0.7 m/s