

ESA ATMOS2024, Bologna 11:15-27July. 2, 2024

Akihiko Kuze, Nobuhiro Kikuchi, Hiroshi Suto, Kei Shiomi Mana Matsuda, Satoshi Matsuo, Shinsuke Funaki Kai Uematsu, Jun Yoshida Tomohiro Oda

Estimating CO₂ emission over global megacities from GOSAT partial column density of lower troposphere and TROPOMI NO₂

GOSAT series satellites

GOSAT TANSO-FTS 2-axis pointing system and FTS Multiplex Advantages

JAXA L2 Product: Retrieving Partial Column Density of UT and LT

Retrieval algorithm

- (1) SWIR constrains column density
- (2) Simultaneous measurements with two orthogonal linear

polarizations remove aerosol contamination.

(3) TIR provides difference in partial-column density between

lower (roughly 0-4 km) and upper troposphere (4-12 km).

(4) Cloud screening using an onboard camera

Parameters to be retrieved

- (1) $CO_2 CH_4$ (5 layers: 2 for troposphere and 3 for stratosphere) H₂O (11 layers)
- (2) Surface albedo (polynomial)

emission

- Single point data has large uncertainty > 16-point average
- Single day data still have large uncertainty to estimate

4 by 4 (40 km by 40 km) targeted area over Beijing XCO₂^{LT} (circles) in March 2019

Estimating CO₂ emission from LT partial column

with inverse wind speed but with large error bars^L</sup>

Kuze et al., Examining partial-column density retrieval of lower-tropospheric CO₂ *from* GOSAT *target observations over global megacities, Remote Sensing of Environment* 2022 ATMOS 2024 - ESA Atmospheric Science Conference

5

Why NO₂ and Why TROPOMI

- Short-live NO₂ as an anthropogenic CO₂ emission proxy and long-live CO₂ are highly correlated
- However, individual Megacities has different source sectors with different CO₂ and NO₂ ratio
- TROPOMI and GOSAT have local time of 13:00-13:30. TROPOMI provide global and diary NO₂ data
- 1. Determine the main emission area
- 2. Determine wind direction
- 3. Suggest effective plume rise height by using NO₂ enhancement and MET data
- 4. Estimate XCO₂(LT) background (inflow)

 $\rm CO_2$ emissions from a mega city

$$f_{CO_2} = \frac{A_p V}{L_s} (\Delta XCO_2^{LT} - Background)$$

- A_p , LT partial air mass: estimate emission area from NO₂ image
- V: wind speed : use effective plume height from NO₂ enhancement
- L_s : the distance between the emission source of the footprint and its downwind edge
- > consider wind direction estimated from NO₂

Wind direction estimation using TROPOMI NO₂ image

7 The same day TROPOMI NO₂

Toward better staying time estimation.

L s : distance between the emission source of the footprint and its downwind edge and enhancement by emissions

- How to estimate the wind direction from
- the NO₂ enhancement
- (1) Determine the effective emission
- center 39.905, 116.391 (asterisk)
- (2) pick up the enhanced area of 0.98 –1.00 peak value
- (3) Select down wind pixel within the above area

Cross-Check

 WD (-180 deg - +180 deg)

 State

 State

ATMOS 2024 - ESA Atmospheric Science Conference

HYSPLIT Model (950hPa)

Wind direction and transport using TROPOMI NO₂ (Uncertainty Reduction)

Past study : X-axis This study area-average NO_2 enhancement in stead of 1/V

Wind direction correction using TRPOMI NO₂

· e e sa

Limiting the NO₂ area represent plume transport

Suggest plume rise height using NO₂ enhancement and MET data

- (1) Select 0.1 deg by 0.1 deg most-enhanced area of TROPOMI NO₂
- (2) Correlation between Inverse wind speed (HISPLIT) vs NO₂ enhancement
- (3) Maxima correlation around 800 m high suggesting effective plume rise height
- (4) Low wind velocity has larger uncertainty, use NO₂ instead

Vertical: Correlation between Inverse wind speed

(HISPLIT) vs NO₂ enhancement

Horizontal: pressure level

Past study by integrating the inventory data upwind 0.26 ppm (underestimate) Using delta CO_2 vs NO_2 : 2.5 ppm

ODIAC CO₂ Inventory of upwind Beijing Wind from Northwest

Intersect of Using delta GOSAT $XCO_2(LT)$ vs TROPOMI NO₂ : 2.5 ppm

Summary

- A. CO₂ emission estimation from GOSAT SWIR and TIR simultaneous observations
- XCO₂(LT) enhance the emission from local source
- XCO₂(UT) as a reference to cancel annual increase and seasonal variation

B. Adding information from TROPOMI NO₂

- Identify emission area and plume direction from NO₂ horizontal image
- Estimate effective plume speed from NO₂ enhancement and MET data
- Estimate background from intercept of NO₂-CO₂ correlation

C. To do next

- Comparison with high-resolution atmospheric simulations
- NO₂ from GEO (TEMPO) different emission sectors. NO₂ emission has diurnal variation especially from traffic.