

BBR Level1 Performances Nicolas Clerbaux, Almudena Velazquez, Edward Baudrez, Christine Aebi Royal Meteorological Institute of Belgium (RMIB)

DISC "BBR" team present at this Workshop

Almudena Velazquez Blazquez

- BM-RAD processor
- BMA-FLX processor (LW part)

Carla Salas Molar

 BMA-FLX processor (SW part)

Edward Baudrez

- BM-RAD and BMA-FLX processors (soft.)
- BBR geolocation

Christine Aebi

 Independent evaluation of the BBR L1 & L2 products (Prodex Cal/Val activity "BRAVO").

BBR in the Production Model (European part)

BBR Level 1 :

 B-SNG product : detector's SW and TW radiances

esa

B-NOM product : SW and LW radiances in integration domains (e.g. 10x10km)

BBR Level 2 :

- BM-RAD : unfiltered SW and LW radiances
- BMA-FLX : TOA SW and LW fluxes + fluxes combining the 3 views

Content : BBR Level 1 Performances

- Overview B-SNG product
- BBR sampling
- BBR calibration strategy
- B-SNG detector noise analysis
- B-SNG detector radiometric consistency analysis
- Proposed update of 'B' values

Directly a second talk on

- B-SNG comparison with CERES FLASHflux
- BBR level 1 evolution
- Summary

Other BBR contributions during the WS:

- MSI and BBR geolocation and coregistration performance assessment: an update, poster #2, Edward Baudrez.
- EarthCARE BBR Validation Results within the BRAVO project, poster #39, Christine Aebi
- Validation of BBR TOA broadband irradiance by high altitude airborne solar and thermal-infrared radiometer measurements, poster #38, André Ehrlich
- L2 BM-RAD and BMA-FLX products verification, Wed., Almudena Velazquez
- Radiative Closure Verification with EarthCARE BBR Solar and Thermal Fluxes, Wed., Carla Salas

Overview B-SNG Product

- 3 views along-track: aft, nadir, fore
- 30 detectors for each view
- 2 interleaved spectral bands: TW, SW (quartz filter)
- BBR instrument operated mostly at 75% of the CDM speed (configurable). For a same band (TW or SW):
 - dt = 0.1532 sec
 - along track sampling ~1113m
- Initially B-SNG was not foreseen to be released as a product (only B-NOM).
- B-SNG interesting for integration over other domains (e.g. the elongated assessment domain)
- B-SNG provides filtered TW and SW radiances

000000000000000000000000000000000000000	000000000000000
000000000000000000000000000000000000000	000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000000000
000000000000000000000000000000000000000	000000000000000
	00000000000000
0000000 00000000	0000000 0000000
0000000 0000000	0000000 0000000
000000000000000000000000000000000000000	0000000 0000000
0000000 0000000	
000000000000000000000000000000000000000	0000000 0000000
000000000000000000000000000000000000000	
0000000000000000	000000000000000
000000000000000000000000000000000000000	000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	
Standard 10v10km	
nadir · 16 * 0 pivolo	-
Aft/fore : 10 * 0 pixels	
AIL/IOIE: IU ^ 9 PIXELS	

B-SNG sampling (CDM speed 75%)

000000000000000000000000000000000000000	0000000000000	
	00000000000000	
0000000000000000	00000000000000	
000000000000000000000000000000000000000	000000000000000	
0000000 00000000	0000000000000000	
0000000 0000000	000000000000000	
	000000000000000	
00000000 00000000		
00000000 000000000		
000000000000000000	000000000000000	
000000000000000000	00000000000000	
000000000000000000000000000000000000000		
000000000000000000000000000000000000000		
000000000000000000000000000000000000000	00000000000000	
000000000000000000000000000000000000000	000000000000000	
000000000000000000000000000000000000000	000000000000000	
Standard 10 x 10km		
nadir : 16 * 9 pixels		
Aft/fore : 10 * 9 pixels		

000000000000000000000000000000000000000	0000000000000	
	00000000000000	
	0000000000000	

000000000000000000000000000000000000000		
	00000000000000000000000	
000000000000000000000000000000000000000	000000000 00000	
000000000000000000000000000000000000000	000000000	
	000000000000000000000000000000000000000	
000000000000000000000000000000000000000		
000000000000000000000000000000000000000		
000000000000000000000000000000000000000		
000000000000000000000000000000000000000		
0000000000		
00000000000000000	00000000000000	
000000000000000000	000000000000000	
000000000000000000000000000000000000000	0000000000000000	
Assessment Domain E v 21 ISC nivelo(ukm)		

View	Across-track	Along track
Aft	975m ± 21m [950m:1020m]	1113m ± 7m [1101m:1124m]
Nadir	592m ± 12m [577m:618m]	1113m ± 6m [1102:1122m]
Fore	971m ± 21m [946m:1016m]	1113m ± 7m [1101m:1124m]

BBR calibration strategy

Longwave calibration each 88s

- Observation of warm and cold blackbodies:
 - \rightarrow LW gain (G_{LW}) and offset for each of the 3 x 30 detectors

Shortwave calibration, each 88s

• Update the SW gain using 'fixed' B factors:

 \rightarrow G_{SW} = B * G_{LW}

• Offset via observation of the cold blackbody

Solar calibration, every 2 months

- Monitoring using the sun diffuser (NDM)
- Spectral degradation via Monitoring Photo-Diodes (MPDs)
 - -> Done, results under analysis by ICMF

warm blackbody @~302K

B-SNG detector noise

- Using nighttime SW images (frame 'A')
- Small overall bias due to thermal contamination (~0.15 W/m²/sr)
- About $\varepsilon \sim 0.8$ W/m²/sr -> $\varepsilon \sim 0.75$ W/m²/sr det. noise -> $\varepsilon \sim 0.30$ W/m²/sr cal. noise

 \rightarrow significant detector noise that has also systematic effect via the calibration

B-SNG detector noise

- Noise level similar between the detector and stable during commissioning, except:
 - Fore det #6 : "broken"
 - Nadir det #20 : bias low.
- Noise reduction in integration domains:
 - Standard domain (10x10km, i.e. 10/16 x 9 pix):

 $\begin{aligned} \varepsilon &= sqrt((\frac{0.75}{\sqrt{90}})^2 + (\frac{0.30}{\sqrt{10}})^2) = 0.12 \text{ W/m}^2/\text{sr (aft/fore)} \\ \varepsilon &= sqrt\left((\frac{0.75}{\sqrt{154}})^2 + (\frac{0.30}{\sqrt{16}})^2\right) = 0.10 \text{ W/m}^2/\text{sr (nadir)} \end{aligned}$

• Assessment domain (21x5km, i.e. 5/8 x 19 pix) $\varepsilon = sqrt((\frac{0.75}{\sqrt{95}})^2 + (\frac{0.30}{\sqrt{5}})^2) = 0.15 \text{ W/m}^2/\text{sr (aft/fore)}$ $\varepsilon = sqrt((\frac{0.75}{\sqrt{152}})^2 + (\frac{0.30}{\sqrt{8}})^2) = 0.12 \text{ W/m}^2/\text{sr (nadir)}$

B-SNG detector radiometric consistency

Input: 19953 B-SNG files (26 July 2024 to 5 Jan. 2025)

TW night (LW radiation)

- consistent detector LW calibration
- Consistent fore/aft views

SW day

- Aft/det.8-13 too sensitive to SW
- Det-to-det variability for the nadir view (due to B factors in the CCDB)

TW day (LW+SW)

- Aft det. 8-13 too sensitive to SW
- Nadir variability (to be investigated)
- SW night (therm contamination + noise)
- Consistent with expected thermal contamination $\frac{3}{5}$
- Nadir det #20 to be investigated.

Proposed update of the 'B' factors

B_SNG detector radiometric consistency : daily analysis - AFT

B_SNG detector radiometric consistency : daily analysis - NADIR

B_SNG detector radiometric consistency : daily analysis - FORE

Summary - B-SNG L1 product

- Overall good quality and excellent availability since 18/06/2024, main interruptions are for calibration:
 - LW calibration during ~4s each 88s
 - Solar calibration each 2 months (at high latitude)
- Recently (Jan+Feb) several missing L1 science data due a threshold reached with the CTM encoder.
 The science data will be recovered in the next reprocessing.
- Important detector noise level but reduced in domain integration
- Detectors radiometric consistency: recommend to update the 'B' factors at detectors' level to improve the consistency
- Aft and fore views look consistent, no evidence of problem with the nadir view

BBR Level-1 product comparison with CERES Nicolas Clerbaux, Almudena Velazquez, Edward Baudrez, Christine Aebi Royal Meteorological Institute of Belgium (RMIB)

BBR-SNG Comparison with CERES FLASHflux - method

- CERES : Cloud and Earth Radiant Energy System
- Level 2 SSF (Single Scanner Footprint) product
- Currently only FLASHFlux (Fast Longwave And SHortwave Flux) products available from across-track instruments on:
 - FM1 on Terra (descending 10:30 morning drifting)
 - FM6 on NOAA20 (ascending 13:25 afternoon)
- CERES PSF of ~20 km (Terra, Aqua) or ~24 km (SNPP, NOAA20) -> larger than the BBR swath (~18km)
- B-SNG integration area : 30 (across track) x 21 (along-track)
- Collocation criteria
 - Time difference < 300 seconds
 - distance between PSF centers < 3km
 - Angle between viewing directions < 3°
- Dates : 10 Aug. 2024 03 March 2025

• (2)

B-SNG Comparison with CERES FLASHflux - Results

JAXA

· e esa

Temporal Stability – BBR versus FM6/NOAA20

 \rightarrow No indication of temporal degradation so far.

Shortwave ground calibration revisit

- SW ground calibration done using a reference laser source at $\lambda\text{=}0.532~\mu\text{m}$
- Need to convert gain G_{laser} to $G_{SW} = C * G_{laser}$

 $\int r_{SW}(\lambda) L_{Planck} (\lambda, 5800) d\lambda$

- A value of C=0.9278 seems to have been used in the CCDB instead of C~1.0 obtained with latest spectral response.
- Using C=1 will reduce the SW radiances and flux by ~7.2%
 - \rightarrow Better agreement with CERES

Figure 6-7: Gain of each pixel at the wavelength of the laser source, and averaged for all TestIDs

Longwave calibration revisit

- The LW calibration uses a CCDB table between filtered radiances and blackbody temperature
- To construct this table there was no interpolation of spectral response, and no sensitivity in the far IR (λ >50µm)
- This assumption necessitates higher unfiltering factor, especially for cold scene (up to 7%-8% unfiltering correction)

Propose to rebuild the CCDB table with interpolation and extrapolation up to λ =500µm

 \rightarrow Better agreement with CERES (lower difference and scene type dependency)

Shortwave and Longwave calibration revisit

JAXA

· e esa

 \rightarrow Target to have the CCDB update ready for end of March.

Summary – comparison with CERES

- CERES is the best BB measurements available for BBR validation (GERB also used but less reliable).
- Simultaneous Nadir Overpasses (SNO) with NOAA2 for each orbit crossing.
- Significant biases with respect to CERES FLASHflux
 the current L1 baseline (AD).
- Will be reduced by CCDB updates. Expected improvements:
 - BBR SW ~9% -> ~2% brighter
 - BBR LW ~3% -> ~1.5% lower

AXA

NOAA20 - night

·eesa