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Introduction 500m - 5min colocated profiles

EarthCare/ATLID [7] is expected to extend the record of spaceborne LiDAR
clouds profiles to observe their variability and possibly changes in response to
climate warming. Unfortunately, the CALIPSO/CALIOP mission [2], launched in
April 2006, stopped acquiring data in August 2023 before ATLID’s launch.

ICESat-2/ATLAS LiDAR, launched in September 2018, is designed for surface
altimetry [3][4], but it has flown at the time of CALIOP and is flying at ATLID
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