
Results

What is NAS?

Neural Architecture Search (NAS) is a process within the field of AI that focuses on automating the design of neural network architectures. The objective is to

obtain an architecture, or several candidate architectures, that are optimized for the application of interest and to work on the device of interest. NAS can be

used to discover neural network architectures that are more efficient, more accurate, and better tailored to the task and data at hand than those that could be

designed by human experts alone.

PyNA-tta-S: a framework for Neural Architecture Search

powered by metaheuristic optimization

Andrea Mazzeo1, Roberto Del Prete1,2, Maria Daniela Graziano1

1 Università degli Studi di Napoli Federico II, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80125 Napoli, Italy
2 ESA Φ-lab, ESA-ESRIN, Via Galileo Galilei 1, 00044 Frascati, Italy

Future Developments

PyNA-tta-S is still in an immature state, but the road towards improving it is relavely clear:

▪ The current generation of architectures is completely random, as are mutations and crossover. A logic based on experience could be implemented.

▪ The vocabulary will be expanded, and the parameter search space will be better evaluated.

▪ Detection and segmentation heads will be implemented to allow the framework to cover a plethora of other applications

▪ NAS operations will expanded to Neck architectures

Genetic Optimization

Genetic Algorithm (GA) optimization is inspired by the biological process of natural genetic transfer between generations. Any implementation of the genetic

optimization algorithm employs the following steps:

1. Starting population is initialized

2. Fitness of every individual is evaluated

3. Mating pool is generated, the worst individuals are excluded

4. Couples are generated

5. Crossover and mutation used to generate new population

6. Repeat from step 2.

Architectures are codified as Chromosomes. Example:

▪ Architecture Code = «LRr3agn1EPaELco2k3s2p2agn1EPMEHCEE»

▪ Chromosome (Genotype) = 'LRr3agn1’ ,'Pa’,'Lco2k3s2p2agn1’,'PM’,‘HC’

▪ 'Lco2k3s2p2agn1’→ ConvBnAct with:

{

Out channels = 2*In_Channels,

Kernel size = 3,

Stride = 2,

Padding = 2,

Activation = GELU,

Times repeated = 1,

}

New generations are obtained by crossover and mutation. Example:

▪ Single-point crossover:

Child 1 = ['LRr3agn1’ , 'Pa’ , 'Lco2k3s2p2agn1’ , 'PM’ , ‘HC’]

Child 2 = ['Lbo3k5s1p1arn1’ , ‘PM’, , ‘HC’]

▪ Mutation:

Child 1 = ['Leo3k5s2p0agn1’ , ‘PM’ , ‘HC’]

Child 2 = ['Lbo3k5s1p1arn1’ , ‘PM’, 'Lco2k3s2p2agn1’ , 'PM’ , ‘HC’]

Mutation

Crossover from this point

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 =
𝑤𝐴𝑐𝑐 ∗ 𝑨𝒄𝒄 + 𝑤𝐹1 ∗ 𝑭𝟏 + 𝑤𝑀𝐶𝐶 ∗ 𝑴𝑪𝑪

𝑤𝐴𝑐𝑐 + 𝑤𝐹1 + 𝑤𝑀𝐶𝐶
∗

1

𝑤𝑡 ∗ 𝒕𝒕𝒓𝒂𝒊𝒏

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20

Iteration

F
it

n
e

s
s

Best

Mean

Genetic Algorithm optimization

Historical Best

▪ Results from testing on xS2Wakes - https://zenodo.org/records/10018939 - binary classification

▪ Reproducibility: seed = 7, mating pool cutoff = 0.8, mutation probability = 0.1, population size = 20

▪ For the fitness formula: wacc = 3, wF1 = 2, wMCC = 1, wt = 10

▪ Notes: results will depend on testing hardware, on the dataset, on the application. The fitness

formula should reflect the required performance

What is PyNA-tta-S?

DL-based models have great potential for use in spaceborne activities, however their use comes with a unique set of challenges. Embedded systems have severe

limitations in terms of electrical power, data volume and data rate, and hardware challenges like processing power and the deterioration of components.

Moreover, the specific mission requirements might further limit the usability of AI models onboard of a spacecraft.

PyNA-tta-S is a NAS framework developed using pytorch lightning that was designed to output problem-specific solutions based on input data and user

requirements. Genetic Optimization is used to explore the search space towards solutions that fit the applications of interest, guided by the selection of a

problem-specific fitness function, and exploiting the modularity of CNN architectures. The framework was tested on a binary classification task of Sentinel-2

imagery of ship wakes and sea clutter, and the results were compared against those of an EfficientNetB0. PyNA-tta-S is currently under development.

EfficientNetB0 PyNA-tta-S

Weight (MB) 46.4 7.97

Accuracy (%) 85.45 96.22

The test shows that PyNA-tta-S, when guided by a

fitness function that rewards lighter solutions,

successfully proposes an architecture that is

significantly lighter than EfficientNetB0.

The performance of the architectures proposed by

PyNA-tta-S can be improved through hyperparameter

tuning and case-specific considerations.

Data and Method

Ship Wake Clutter

The dataset:

▪ In ship wake detection, sea clutter often generates false

positives. xS2Wakes is a small dataset with 2 labeled

classes: ship wakes and sea clutter.

▪ 269 four-band S2 images 4x256x256 px

▪ Bands B2 (blue), B3 (green), B4 (red), B8 (near infrared)

▪ Dataset available at https://zenodo.org/records/10018939

The test was conducted on PyNA-tta-S and EfficientNetB0.

For PyNA-tta-S, the following fitness function was used:

• Where wacc = 20, wnp = 1e-6

• seed = 7, population size = 20, GA_iterations = 10

• mating pool cutoff = 0.8, mutation probability = 0.1

• EfficientNetB0 initialized with IMAGENET1K_V1 weights

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 = 𝑤𝐴𝑐𝑐 ∗ 𝑨𝒄𝒄 − 𝑤𝑛𝑝 ∗ 𝒏𝒖𝒎_𝒑𝒂𝒓𝒂𝒎

https://zenodo.org/records/10018939
https://zenodo.org/records/10018939

	Diapositiva 1

