

3rd Aeolus NWP impact working meeting 2021

豵

 \bigcirc

Impact of Aeolus HLOS winds in the Korean global model KIM

Hyoung-Wook Chun¹ and Sihye Lee²

¹ Numerical Modeling Center, Korea Meteorological Administration (KMA) ² Korea Institute of Atmospheric Prediction Systems (KIAPS)

2021.12.3.

- I. Introduction of KIM
- II. Aeolus assimilation in KIM system
- Ⅲ. Forecast impact of Aeolus
- IV. Summary

KIM, Korean global NWP model

The Korea Institute of Atmospheric Prediction Systems (KIAPS)

delivered the global NWP system to the Korea Meteorological Administration (KMA)

KIM: Korean Integrated Model Cubed sphere grid structure global model Horizontal resolution: NE360NP3 ~ 12km Vertical resolution: 91 levels with 1 Pa top

	Dynamics	Physics						
Numerical method	Spectral Element method	RRTMG-K (Baek 2017)						
Spherical grid	Cubed-sphere (Equi-angular gnomonic projection)	Scale- aware PBL (Shin & Hong 2015)						
Equation	Non-hydrostatic (Perturbation form)	Scale- aware CPS(KIAPS- SAS) (Han and Pan 2011,						
Temporal approximation	Split-explicit RK3, second-order for nonlinear equation	Kwon and Hong 2017) Adjustment SCV (Hong et al. 2013) WSM5 MPS (Hong et al. 2004)						
Explicit spatial diffusion	6 th order horizontal diffusion + divergence damping	Prognostic cloud (Park et al. 2015)						

KMA has been operating UM and KIM in parallel since April 2020.

KIM performance

Plot produced using Met Office software, with permission

Weighted RMSE %age differences relative to ECMWF

where
$$\sum_{c} w_{c} = 100$$

Component weights w _c												
Area	Parameter	Forecast range										
		T+24	T+48	T+72	T+96	T+120						
NH	PMSL	6.4	6.4	6.4	6.4	6.4						
	500 hPa GPH	2.4	2.4	2.4	2.4	2.4						
	250 hPa Wind	2.4	2.4	2.4	2.4	2.4						
TR	850 hPa Wind	2.0	2.0	2.0	2.0	2.0						
	250 hPa Wind	1.2	1.2	1.2	1.2	1.2						
SH	PMSL	3.2	3.2	3.2	3.2	3.2						
	500 hPa GPH	1.2	1.2	1.2	1.2	1.2						
	250 hPa Wind	1.2	1.2	1.2	1.2	1.2						

• Verification against own analyses

• 1.5° x 1.5° verification grid

Data assimilation of KIM, 4DEnVar

- KPOP : Observation Preprocessing
- H4DEV: Variational DA
- LETKF : Ensemble DA

이 기상청 수치모델링센터

Experiment setup

6

Items	Contents							
Model	KIM3.7 (next candidate, Dec 2021) low resolution (ne180, 25 km)							
DA	H4DEV(Hybrid 4D Ensemble Variational DA) (ne144, 32 km) Used data: sonde, surface, aircraft, scatwind, amsua, atms, mhs, mwhs2, amsr2, iasi, cris, csr(gk2a, himawari, msg), amv, gpsro							
Execution period	Summer 1.5 mon (2020.06.15. ~ 07.31.)							
Evaluation period	Summer 1 mon (2020.07.01. ~ 07.31)							
CTL	without Aeolus							
EXP	 with Aeolus Spatial thinning resolution = 300 km Observation error inflation = 1.5 times Mie in cloudy & Rayleigh in clear sky Rejection: altitude below 1 km Rejection: confidence flag 1 							

RMSE difference of wind speed

 $RMSE_{exp} - RMSE_{ctl}$

1 day forecast 10 50 0.6 100 0.5 150 200 0.4 0.3 300 0.2 400 0.1 Improved 0.05 500 -0.05 -0.1 -0.2 700 -0.3 -0.4 850 -0.5 925 -0.6 1000 90S 60S 305 EQ 30N 60N 90N

mean = -0.007, min = -5.249, max = 5.253

RMSE is calculated against IFS analysis

mean = 0.008, min = -10.474, max = 13.861

Wind speed improved up to 3 days forecast in southern hemisphere.

RMSE difference of geopotential

 $RMSE_{exp} - RMSE_{ctl}$

RMSE is calculated against IFS analysis

Geopotential improved up to 3 days forecast

RMSE difference of temperature

 $RMSE_{exp} - RMSE_{ctl}$

RMSE is calculated against IFS analysis

1.2

0.8

0.6

0.4

0.2

0.1

-0.1

-0.2

-0.6

-0.8

-1

1.2

Temperature looks neutral.

RMSE difference of humidity

 $RMSE_{exp} - RMSE_{ctl}$

RMSE is calculated against IFS analysis

Humidity improved in early forecast.

Improvement ratio of forecast

(RMSE_{ctl} - RMSE_{exp})/RMSE_{ctl}

RMSE is calculated against IFS analysis

		Southern Hemisphere						Tropics						Northern Hemisphere					
	fcst time (hr)	00	24	48	72	96	120	00	24	48	72	96	120	00	24	48	72	96	120
Humidity	s700hPa	0.48	1.25	1.45	0.41	0.04	0.09	0.27	0.49	0.53	0.37	0.11	-0.01	0.12	0.14	0.27	-0.12	0.83	0.4
Wind Speed	w250hPa	2.13	2.02	2.43	1.72	0.63	-0.5	0.69	0.36	0.17	-0.01	0.29	0.96	0.59	0.33	0.4	0.12	-0.05	0.13
	w500hPa	2.83	2.03	1.91	1.16	0.15	-0.55	2.47	1.48	0.69	0.87	0.59	0.12	0.47	0.15	0.34	0.52	0.75	0.33
	w850hPa	1.37	1.35	1.04	0.05	-0.54	-0.49	1.32	0.36	0.44	0.2	-0.59	-0.49	0.34	0.4	0.22	0.31	0.53	0.49
Geopotential	z250hPa	7.52	5.21	3.26	2.47	0.57	-0.88	1.38	2.92	2.03	1.81	2.33	2.23	2.73	1.47	0.64	0.03	1.51	0.55
	z500hPa	4.21	3.57	2.57	1.32	-0.3	-1.0	-1.18	1.03	1.27	0.61	-0.63	0.57	0.79	1.31	0.62	1.01	2.82	0.75
	z850hPa	-0.29	0.76	1.36	-0.17	-1.05	-0.53	-1.57	2.2	0.34	0.24	-1.54	-0.53	0.73	1.18	0.19	1.12	2.51	0.33
Temperature	t250hPa	1.78	1.82	1.54	1.74	0.28	-0.2	1.73	1.4	1.39	1.0	0.86	1.28	0.88	0.87	0.87	1.08	1.41	1.06
	t500hPa	3.2	2.2	1.78	1.54	0.64	-0.15	1.81	0.74	0.0	0.24	0.28	0.69	1.51	0.87	0.64	0.21	0.71	0.55
	t850hPa	-0.39	-0.15	-0.2	0.28	-0.32	-0.33	1.17	0.34	0.04	-0.11	-0.4	-0.33	0.57	0.32	0.33	-0.03	0.54	0.44

Improvement ratio of forecast

(RMSE_{ctl} - RMSE_{exp})/RMSE_{ctl}

RMSE is calculated against IFS analysis

기상청

수치모델링센터

Vertical bar indicate 95% confidence interval

12

- We have assessed the forecast impacts of assimilating Aeolus wind data in the Korean global NWP model (KIM) system.
- Assimilation of Aeolus gives a globally significant benefits for 1~2% reduction of the winds RMSE in Southern Hemisphere and tropics up to 3 days forecast.
- In the Southern Hemisphere, Aeolus gives a large improvement in initial field of the geopotential height, but the positive impact can not be last up to 4 days forecast.
- In the Northern Hemisphere, the improvement of the initial field is smaller than in Southern Hemisphere, but the positive effect persists up to 4 days forecast.

Thank you!!

