

Studies of halogenated species using the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT

<u>Kaley A. Walker¹</u>, Laura Saunders¹, David Plummer², Gabriele P. Stiller³, Ali Jalali¹, Niall J. Ryan¹, Patrick E. Sheese¹, and Jiansheng Zou¹

¹Department of Physics, University of Toronto, ²Climate Research Division, Environment and Climate Change Canada; ³Karlsruhe Institute of Technology

ESA ATMOS-2024 – Bologna, Italy – 5 July 2024

ACE on SCISAT

Atmospheric Chemistry Experiment (ACE) Satellite Mission

Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure

Focusing on investigating:

- Distribution of ozone in upper troposphere and stratosphere
- Effects of biomass burning on the troposphere
- Relationship between atmospheric chemistry and climate change

Size: 1.12 m dia. x 1 m; 152 kg Total power: 70 W (from single solar panel) Launch date: August 12, 2003 Orbit: 74° inclined circular orbit at 650 km

ACE-FTS Instrument Details

Interferometer-side Input optics-side

Images: ABB-Bomem

- ACE-FTS profiles (newest version 5.2; previous version 4.1/4.2; baseline species):
 - Tracers: H_2O , O_3 , N_2O , NO, NO_2 , HNO_3 , N_2O_5 , H_2O_2 , HO_2NO_2 , N_2 , SO_2
 - Halogen-containing gases: HCl, HF, ClONO₂, CFC-11, CFC-12, CFC-113, ClO, COF₂, COCl₂, COFCl, CF₄, SF₆, CH₃Cl, CCl₄, HCFC-22, HCFC-141b, HCFC-142b, HFC134a, HFC-23, HOCl, HFC-32 (plus several more HFCs being developed as research products)
 - Carbon-containing gases: CO, CH₄, CH₃OH, H₂CO, HCOOH, C₂H₂, C₂H₄, C₂H₆, OCS, HCN acetone, CH₃CN, peroxyacetyl nitrate (PAN), CO₂ (5-18 km and >60 km), pressure / temperature from CO₂ lines
 - Isotopologues: Minor species of H₂O, CO₂, O₃, N₂O CO, CH₄, OCS, NO₂, HNO₃
- MAESTRO profiles (newest version 4; previous version 3.13):
 O₃, NO₂, optical depth, and water vapor (v31) aerosol extinction to come
- IMAGERS profiles (current version v5.0; previous version 4.1/4.2):
 - Atmospheric extinction & aerosol extinction at 0.5 and 1.02 microns

Halogenated species validation: ClO (Aura-MLS)

- New ACE-FTS v5.2 retrieval extended profiles to higher altitude (39 km vs. 27 km for v4)
- Good agreement in magnitude of ClO peak MLS v5 vs. v5.2/v4.1/4.2
- MAD comparable between MLS v5 and v4.1/4.2; increases above ~23 km for v5.2
- Similar comparisons with MIPAS and SMILES

Coincidence criteria: within 12h and 300km, and on same side of polar vortex edge

L. Saunders, N. Ryan, et al., in preparation.

Halogenated species validation: HOCl (SMILES)

Newly retrieved species in v5.2, chlorine reservoir HOCl

- Comparison of all coincident profiles Oct. 2009 – Apr. 2010
- ACE-FTS reports more HOCl than SMILES (both JAXA and NICT products) and Aura-MLS
- Contributes additional species to Cly family calculations using ACE-FTS results

L. Saunders, N. Ryan, et al., in preparation.

Stratospheric age of air (AoA) derived from SF₆

Multi-year (2004-2021) mean zonal mean AoA from ACE-FTS

Using SF_6 as a clock tracer, stratospheric age of air for ACE-FTS (v3.5/3.6) and MIPAS (V5R)

- Age increases with distance from the tropical tropopause
- Air in the upper stratosphere appears older due to a mesospheric SF₆ sink

Stratospheric age of air (AoA) derived from SF₆

Multi-year (2004-2021) mean zonal mean AoA from ACE-FTS

Using SF_6 as a clock tracer, stratospheric age of air for ACE-FTS (v3.5/3.6) and MIPAS (V5R)

- Age increases with distance from the tropical tropopause
- Air in the upper stratosphere appears older due to a mesospheric SF₆ sink
- A correction scheme developed by H. Garny was implemented to account for this – applied here

L. Saunders et al., in preparation.

Evaluation of AoA from Sampled CMAM39-SD

CMAM39-SD is the newest specified dynamics version of the Canadian Middle Atmosphere Model, a chemistry climate model, for 1980-2018

- Model's age of air is based on an idealized SF₆ tracer
- CMAM modelled air is generally too young, especially at higher latitudes, compared to ACE-FTS SF₆ AoA

- HFCs are significant greenhouse gases that are typically thousands of times more powerful than CO₂ in contributing to global warming
- In October 2016, the Kigali Amendment was completed to include the phase out of hydrofluorocarbons (HFCs) within the Montreal Protocol
 - In September 2024, it will be 37 years since the original Protocol was finalized
- ACE-FTS was the first to measure HFC-23 and HFC-134a from space
 - It is now the only satellite measuring vertically resolved profiles of HFCs
 - Currently, it measures CFC-11, CFC-12, CFC-113, HCFC-22, HCFC-141b, HCFC-142b, HFC134a, HFC-23, HFC-32 plus new research HFC products

Global view of HFC-32 (CH₂F₂) trend

- Time period for analysis limited to time range of NOAA data availability
- Breakpoint where increase occurs in rate of HFC-32 increase 2015-2016 range

Analysis by P. E. Sheese

Examining Global Trend in HFC-134a

- HFC-134a, tetrafluroethane (CF₃CH₂F), has GWP of >1,400
- In contrast to HFC-32, no significant breakpoint determined in ACE-FTS or NOAA

Summary

- ACE has evolved from an ozone-focused mission to a climate-focused mission
 - Advantage of large number of species being measured simultaneously including halogenated
 - Stability of ACE-FTS measurements useful for multi-year time series and trend analysis
- Data availability for ACE:
 - ACE-FTS (and MAESTRO) from https://databace.scisat.ca/level2 (registration required)
 - Data quality flags are being produced separately <u>doi:10.5683/SP2/BC4ATC</u> (ACE-FTS v5.2)
 - Zonal mean climatologies available through SPARC Data Initiative or talk to Kaley!

Funding for ACE and this work provided by:

- Canadian Space Agency (CSA) and Natural Sciences and Engineering Research Council of Canada Thanks to:
- SCISAT Science Operations Centre, Peter Bernath and Chris Boone
- MIPAS, MLS, SMILES teams: Gabriele Stiller, Thomas von Clarmann, Alexandra Laeng, Michelle Santee, Gloria Manney, Luis Milan, Makoto Suzuki, Masato Shiotani, Yasko Kasai
- ISSI Stratospheric Age of Air colleagues especially Florian Haenel, Hella Garny, Harald Boenisch, Andreas Engel, Johannes Laube, Marianna Linz, Felix Ploeger, Eric Ray.