It Takes Two to Tango

The Twin Anthropogenic Greenhouse Gas Observers

Pepijn Veefkind, Jochen Landgraf, Nurcan Alpay Koc, Zeger de Groot and the TANGO Team

TANGO | ESA Scout

Objective: Quantification of CO₂ and CH₄ point source emissions

Two CubeSats (16 units/liter):

- ✓ TANGO-Carbon and TANGO-Nitro
- ✓ Collocated CO_2/CH_4 (1.6 µm and NO₂ measurements (400-500 nm)

✓ Time difference < 60 s</p>

30x30 km² field of view with a spatial resolution of 300 m

CO₂/CH₄

TA

Science mission open data - open source policy

TANGO

ESA Scout Programme

A Scout mission is defined by three key aspects:

- It delivers innovative science and technology
- It costs less than €35 million
- It is developed within three years, from kick-off to launch

Scout missions are literally scouts: they pave the way to innovative science in a quick and agile fashion.

TANGO Mission Objective

Quantify Point Source Emissions of CO₂ and CH₄ at Facility Scales

- To reduce uncertainties in emissions of point sources.
- In support of the Paris Agreement global stocktakes.
- In support of the Methane Pledge (30% reduction in 2030).

Emissions of the Energy Sector

Sector: energy production with 13.51 Gt/yr total CO₂ emission 100 800 700 80 cumulative CO2 emissions [%] 600 frequency/bin 60 53.09 % 40 300 20 200 14.29 % 100 0 10-2 10¹ 10-1 10⁰ CO₂ source [Mt/yr] small LARGE >5 MT yr⁻¹ >2 MT yr⁻¹

NO₂ tropospheric column density May-August 2022 KNMI

23

The Proxy Retrieval Method

Proxy retrieval approach:

TA

$$XCO_2^{\text{pro}} = \frac{[CO_2]}{[CH_4]} XCH_4^{\text{mod}}$$

- + Only minor aerosol-induced error
- + Both CH₄ and CO₂ product
- Difficulties in interpreting mixed sources
- Precision is a factor ~1.5 lower than that of [CH₄] and [CO₂]

Co-located CO₂-NO₂ Observations

- NO₂ observations will be used as plume indicator.
- CO₂/NO_x ratio can be determined and applied to other NO₂ observations.
- NO₂ can be observed over water for coastal and offshore emissions.

Observations of the GEOTASO airborne instrument over Chicago for 1 June 2017 at a spatial sampling of 250x250 m²(left panel), 2x2 km²(middle panel), and 5x5 km² (right panel). Artificial noise was added corresponding to the TANGO requirement

TANGO Plume Observations

Spatial resolution	<300 x 300 m ²
Spatial scenes	>30 x 30 km ²
Number of cloud-free scenes	>10,000 per year
XCO ₂ precision	<4 ppm
XCH ₄ precision	<18 ppm
NO ₂ tropospheric column	< 5 10 ¹⁵ molec.cm ⁻²
XCO ₂ relative bias in a scene	<3 ppm
XCH ₄ relative bias in a scene	<14 ppm
NO ₂ relative bias in a scene	< 2 10 ¹⁵ molec.cm ⁻²
Level 2 Products	CO ₂ , CH ₄ , NO ₂ , Clouds

Zoom-in for Mapping Missions

Using satellites to uncover large methane emissions from landfills

The Dance Moves of TANGO

1.1

swath width not up to scale

Flexible target selection

Objective: ~ 11 000 successful point source targets/year

Target selection one day before sensing using cloudiness forecast to push data yields and user input. Inventory support (70 %)

Open observation time (25 %)

Cal/Val targets (5 %)

Summary

- TANGO is a cubesat mission providing observations of CO_2 , CH_4 and NO_2 , with a planned launch around 2027.
- TANGO aims to observe >10,000 scenes per year, at facility scale spatial resolution (<300 x 300 m²)
- TANGO consist of two agile platforms that fly in formation.
- The TANGO spectrometers have Tropomi heritage and measure the 1.6 µm and 400-500 nm bands.
- All TANGO L1B and L2 data and algorithms will be open
- The TANGO welcomes inputs from the science community!

