

Evaluation of ATLID aerosol products with AD-Net

Yoshitaka Jin¹, Tomoaki Nishizawa¹, Atsushi Shimizu¹, Nobuo Sugimoto¹, Hironori Iwai², Makoto Aoki², Sebastian Papandrea³, Hajime Okamoto⁴, Hitoshi Irie⁵, Rei Kudo⁶, Tetsu, Sakai⁶, and Akiko Higurashi¹ 1. NIES, 2. NICT, 3. SMN, 4. Kyushu University, 5. Chiba University, 6. MRI/JMA

> 1st ESA-JAXA EarthCARE In-Orbit Validation Workshop 14 – 17 January 2025 | VIRTUAL EVENT

Validation of ATLID products using AD-Net ground-based lidars

Asian dust and aerosol lidar observation network (AD-Net) is one of the important lidar networks to validate ATLID products esa

• (2)

- AD-Net has been upgraded by installing multi-wavelength HSRL and Raman lidars, which are useful for direct comparison of extinction and backscatter (Koganei, Tsukuba, Fukuoka, Toyama, and Hedo)
- > As the first validation work, comparison analysis is carried out using HSRL at Tsukuba, Japan

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

Data matchup between EarthCARE/ATLID and ground-based lidars

Observation site	Ground-based lidar type	EarthCARE overpass time (ASC/DESC) [UTC]	Number of overpass within 100 km distance (2024.10.09~)	Data availability of ground-based lidar during overpasses	Note
Koganei (NICT)	355-nm HSRL (1α+1β+1δ)	16:20 / 05:00	22	22/22 = 100%	
Tsukuba (NIES)	355 & 532-nm HSRL (2α+3β+2δ)	16:20 / 05:00	15	15/15 = 100%	Started from 2024.08.15 -
Fukuoka (Kyushu Univ.)	355 & 532-nm HSRL (2α+3β+2δ)	17:00 / 05:40	20	19/20 = 95%	355-nm HSRL from Mar. 2024
Toyama (Univ. of Toyama)	355 & 532-nm Raman lidar (2α+3β+2δ)	16:30 / 05:10	18	17/18 = 94%	
Hedo (NIES)	355 & 532-nm Raman lidar (2α+3β+2δ)	17:10 / 05:40	15	0/15 = 0%	Measurement stopped from 2024.10.09 util 2025.01.08

· e esa

Number of overpasses is 5-8 per month for each site => expected to have 30-50 passes until the L2a validation report

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

Dual-wavelength HSRL at Tsukuba

Continuous observation data of day and night aerosols/clouds by DW-HSRL are available at Tsukuba since Aug. 2024

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

First comparison between ATLID and NIES Lidar (HSRL)

Mie co-polar channel attenuated backscatter

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

Averaging area of ATLID signals

ECA_E_ATL_NOM_1BS_20241223T0449_20241223T0501_03240D_vAc (daytime)

Transported aerosol layer case (low depolarization Asian dust)

Boundary layer aerosol case (1)

Cause of negative backscattering ratio

ECA_E_ATL_NOM_1BS_20241128T0450_20241128T0502_02851D_vAc (daytime)

241128 0459UT D=14.1km

Mie attenuated backscattering coefficient (both copolar and crosspolar) have negative values

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

Boundary layer aerosol case (2)

- > ATLID L1b products are evaluated using 355-nm ground-based HSRL at Tsukuba, Japan
- When averaging ATLID signals, surface elevation variations and atmospheric inhomogeneities should be considered
- Depolarization ratio during daytime is noisy and wide area averaging is needed and may have lower values than those measured by the ground-based lidar
- Backscattering ratio calculated from L1b signals has negative values for optically-thin aerosol cases (not all cases)
- > We will extend the comparison analysis using other lidars (Koganei, Fukuoka, Toyama, and Hedo)

Thank you for your attention!

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT