< ECMWF

cerea &m g se

Ecole des Ponts

Towards CO2 plume inversion from
satellites using deep neural networks

ESA-ECMWF workshop - 2024/05/08

Joffrey Dumont Le Brazidec'?, Pierre Vanderbecken?, Alban
Farchi?, Marc Bocquet?, Grégoire Broquet?, Gerrit Kuhlmann*

ECMWEF, Bonn [1]
CEREA, Ecole des Ponts and EdF R&D, Tle-de-France, France [2]
LSCE, Laboratoire des sciences du climat et de I'environnement [3] ‘

Swiss Federal Laboratories for Materials Science and Technology
(Empa), Dibendorf, Switerzland [4]




‘@ CoCO2, prototype system for a CO2 monitoring service
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XCO2 field

[ppmv] u-wind field

@- Inversion: Supervised learning with CNNs
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Output:

Regression
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@ convolutional + leaky ReLU
@ max pooling
@ flatten+dense

@ dropout

@ batch normalisation

Emission flux rate in Mt.yr-1
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e SMARTCARB COSMO-GHG simulated fields (resolution
CO2M) 406
o with NO2 simulated fields
. o . 05
o  with ERA5 wind fields (not those used to simulate
the fields) 404
403
402
Datasets used to evaluate 0C0-3 Xco, -
. ) SAM Mode (SRU+GPS), fossil0193, "fossil_Belchatow_powerplant”
e SMARTCARB simulated fields Ops_B10313 r02
09:01 UTC 16 Apr 2023, Orbit 22354
® 0CO-3 Snapshot Area Maps (SAMs) data
with ERAS fields and no NO2 .
417§_

Courtesy NASA/JPL-Caltech (R. R. Nelson)

CoCO2 - Prototype system for a Copernicus COZ service 7



XCO2, no clouds, no synthetic satellite noise
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% Geographical extrapolation
> Training on plumes of
Dolna Odra power plant

=> economic: trained on a limited
number of plumes

=> universal: able to inverse all
future plumes




Extrapolation, ex. 1

Extrapolation, ex. 2

XCO?2 field

[ppmv]

Targetted plume

weight bool.
4

CNN segmentation proba.
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0



‘@ Inversion of power plants (simulated) plumes
N

4
Lippendorf (emission flux range: 10-25 Mt/yr) Turow (emission flux range: 5-10 Mt/yr)

Method

[ Neural network
[ Neural network (with NO2)

[ Cross-sectional

Method

[0 Neural network
[1 Neural network (with NO2)

' Cross-sectional

Density

0 50 100 150 200 0 50 100 150 200

Relative error to true emissions of Lippendorf PP (%) Relative error to true emissions of Turow PP (%)

Absolute error of the CNN = half the absolute error of the cross-sectional fluxes method
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@ From CO2 simulations to OCO3-SAM data
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SMARTCARB or OCO3-SAM data

) : OCO3-SAM observation before cleaning/processing
after cleaning/processing
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@ Inversion of 0CO3-SAM observed plumes - 1
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@o- Inversion of 0CO3-SAM observed plumes - 2
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Relative difference 0CO3-SAM obs. reported emissions/predictions
only slightly higher than relative error on SMARTCARB simulations
Method works nicely on both simulations and observations.

Brute force approach was not working, to improve the results, various
approaches have been tried.

Some relying on improving the model When focusing on improving the data:
->1-5% relative error variations -> 20-30% relative error variations

Good Data >> Good model

How to improve the data ?
The model learns because the only invariant thing in the data is that the output (= the emission) is
proportional to some input pixels (the plume) -> create model behaviour invariance to all other changes
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Main messages

e Our model, trained on CO2 simulations, can be directly applied to invert
OCO3-SAM CO2 plumes (with some caveats - systematic noise)

e Deep learning performs better than alternative methods for CO2 plume inversion

e Models trained on power plants from Germany generalise to US / China power
plants

e Improving data yielded better results than improving the model.

Next steps /

® Inversion of city plumes. But few data available ...

® Addressing discrepancy between simulated CO2 fields and OCO3-SAM satellite
data -> mix both in training

® Dealing with future CO2M satellite observations, coming in 2027 (?)
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« Segmentation of XCO, images with deep learning: application to synthetic

plumes from cities and power plants », Geosci. Model Dev., 16, 3997—4016,
https://doi.org/10.5194/gmd-16-3997-2023, 2023

« Deep learning applied to CO2 power plant emissions quantification using
simulated satellite images », Geoscientific Model Development Discussions
https://doi.org/10.5194/gmd-2023-142

OCO3-SAM data application paper in preparation ...
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