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Background

* Cyclones form frequently in the Mediterranean basin due to
region location and the complex topography

« Even tough smaller and shorter lived than cyclones forming in
other ocean basins Med cyclones cause severe damage in the
highly populated coasts of the region

A number of different dynamical mechanisms for cyclone
genesis and intensification play a role, resulting in the
occurrence of different types of low pressure systems, ranging
from mid-latitude to tropical-like cyclones
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Storm Daniel

« Storm Daniel in September 2023 was the costliest cyclone outside the North Atlantic (> 20 B US$)
« The deadliest cyclone globally since 2013 (10.000 fatalities estimated)

a Full track of Daniel
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# of TCs [per year]

Cyclones in Seasonal forecast
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Climate model resolution and TCs

(a) LR: Composite storms for 925 hPa tangential wind and psl| hPa
880-920 hPa 920-945 hPa 945-965 hPa 965-980 hPa 980-995 hPa 995-1020 hPa (b) HR: Composite storms for 925 hPa tangential wind and psl
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Roberts et al (2020): Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP—PRIMAVERA Multimodel Ensemble

Low-resolution models reproduce only a fraction of the observed cyclones, and are not able to reproduce
intense cyclones



Two approaches to Al seasonal forecast

Adapted from : https://s2s-ai-challenge.github.io/

observations

Predictor sl b S2S forecasts
initial conditions
Machine Learning Model Data-driven
Predictand ML forecasts
I I Score

Ground Truth observations




CYCLOPS:
Al-enhanced seasonal prediction of Mediterranean cyclones

The aim of this project is to improve the prediction of cyclone activity, exploiting a hybrid AI approach where the
occurrence of extremes is linked to large-scale meteorological fields produced by a dynamical model:

 First the (statistical) connection between the large-scale variables (predictors) and the extreme of interest (predictand) is
established in the “ground truth” by training one or several ML models on observational/reanalysis dataset

» The trained ML model is then applied in inference mode on the same large-scale predictors from the dynamical seasonal
forecast model hindcasts, and the prediction compared with observations.

» The ML model is tuned to compensate the effect of the dynamical model bias on the predictive skill.
C

trained on
‘ground truth’ Trained ML
inference on
dynamical model
9 predictors
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(b) Monthly distribution of all tracks
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(c) Monthly distribution of 500 deepest cyclones

« In this work a confidence 1
level of 7 has been used.
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Drivers

(a) SH summer (DJF) (b) NH summer (JJA)
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(a) Potential intensity in SH summer (DJF) (b) Potential intensity in NH summer (JJA)
From Yanase et al. 2014 ) — — : .
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Target

Common metrics used for cyclone activity include cyclone number, cyclone days and ACE (accumulated
cyclone activity).

Here we focus on ACE, which has a number of advantages:
« Naturally gives more weight to more intense cyclones, with no need to impose ad hoc filters

» Less sensitivity on the details of the cyclone detection scheme used to produce the ground truth database
ACE
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Model 1 (CNN)

Input layer
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CNN architechture from Fu et al. 2022

Some changes made with respect to original architecture to optimize for the current problem:
* Reduction of the dimension of conv layers

» Added dropout and L2 regularization

» Implementation of early stopping

« Changed loss function to LogCosh

« Change Mean Pooling with Max Pooling




Model 1 (CNN)

Ground truth vs prediction - corr 0.73

anno - — Y test
¥y pred
7000 {
000 -

5000 -

ACE

4000 4

3000 - - 1

| _
SIS AV INAAY

Months




Model 2 (RF)

Simpler model based on random forest regressor: avo_C
rh_E 0.102472

feat_imp

0.441095

« 15 features: spatial averages of the five drivers across western, central and
eastern Mediterranean avo_E 0.063274

Ground truth vs prediction - corr 0.64 sst E 0.051824

i e =1
oo r avo W 0.046821
y_pred
7000 - ws W 0.040147
6000 4 egr_ C 0.040074
ws_E 0.035922
5000 A
b sst W 0.035149
£ 4000 -
egr_E 0.033059
3000 - | 1 egr W 0.032087
2000 - / ! I( \ / rh. W 0.028478
1000 - [\ sst C 0.026530
_,[ L | 4 \ ws_C 0.012721
D T T ! =

0 10 20 30 40 50 60 70 rh_ C 0.010347




Model 3 (XGB)

Simpler model based on boosting (XGB algorithm):

« 15 features: spatial averages of the five drivers across western, central and eastern
Mediterranean

» Better representation of ACE peak values Ground truth vs prediction - corr 0.58
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Random Forest

Good result for correlation
Takes into account spatial
patterns

Easier to interpret

Better representation of peak
values

« Apply trained models to forecast data

Best strategy to switch from reanalysis to forecast world? Fine-tuning? Full retraining on hindcast

period?

Model summary and next steps

Not so good skill for the
amplitude of ACE peaks

Needs assumptions on spatial
patterns

Lower correlation
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