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Background

• Cyclones form frequently in the Mediterranean basin due to
region location and the complex topography

• Even tough smaller and shorter lived than cyclones forming in
other ocean basins Med cyclones cause severe damage in the
highly populated coasts of the region

• A number of different dynamical mechanisms for cyclone
genesis and intensification play a role, resulting in the
occurrence of different types of low pressure systems, ranging
from mid-latitude to tropical-like cyclones

Ianos (September 2020)



Storm Daniel

• Storm Daniel in September 2023 was the costliest cyclone outside the North Atlantic (> 20 B US$)
• The deadliest cyclone globally since 2013 (10.000 fatalities estimated)





Cyclones in Seasonal forecast

Befort et al 2022



Climate model resolution and TCs

Low-resolution models reproduce only a fraction of the observed cyclones, and are not able to reproduce 
intense cyclones 

Roberts et al (2020): Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble 



Two approaches to AI seasonal forecast

Adapted from : https://s2s-ai-challenge.github.io/

Data-driven Hybrid



CYCLOPS:
AI-enhanced seasonal prediction of Mediterranean cyclones

The aim of this project is to improve the prediction of cyclone activity, exploiting a hybrid AI approach where the 
occurrence of extremes is linked to large-scale meteorological fields produced by a dynamical model:

• First the (statistical) connection between the large-scale variables (predictors) and the extreme of interest (predictand) is 
established in the “ground truth” by training one or several ML models on observational/reanalysis dataset

• The trained ML model is then applied in inference mode on the same large-scale predictors from the dynamical seasonal 
forecast model hindcasts, and the prediction compared with observations.

• The ML model is tuned to compensate the effect of the dynamical model bias on the predictive skill.
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Data

• No fully observation-based
database (such as IBTrACS)
available in the region

• Data from Flaounas et al.
2023 “best track” dataset,
based on the consensus
between ten different
cyclone tracking algorithms
applied to ERA5.

• In this work a confidence
level of 7 has been used.



Drivers

Predictors
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From Yanase et al. 2014



Target
Common metrics used for cyclone activity include cyclone number, cyclone days and ACE (accumulated
cyclone activity).
Here we focus on ACE, which has a number of advantages:
• Naturally gives more weight to more intense cyclones, with no need to impose ad hoc filters
• Less sensitivity on the details of the cyclone detection scheme used to produce the ground truth database



CNN architechture from Fu et al. 2022

Model 1 (CNN)

Some changes made with respect to original architecture to optimize for the current problem:
• Reduction of the dimension of conv layers
• Added dropout and L2 regularization
• Implementation of early stopping
• Changed loss function to LogCosh
• Change Mean Pooling with Max Pooling



Model 1 (CNN)



Model 2 (RF)
Simpler model based on random forest regressor:
• 15 features: spatial averages of the five drivers across western, central and

eastern Mediterranean



Model 3 (XGB)
Simpler model based on boosting (XGB algorithm):
• 15 features: spatial averages of the five drivers across western, central and eastern

Mediterranean
• Better representation of ACE peak values



Model summary and next steps

CNN • Good result for correlation
• Takes into account spatial 

patterns

• Not so good skill for the 
amplitude of ACE peaks

Random Forest • Easier to interpret • Needs assumptions on spatial 
patterns

XGB • Better representation of peak 
values

• Lower correlation

• Apply trained models to forecast data

• Best strategy to switch from reanalysis to forecast world? Fine-tuning? Full retraining on hindcast
period?
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