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Extra-tropical
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Seasonal Context o=

Seasonal climate predictions cover the gap between
weather forecasts and climate projections

R Extfa-tiopicai %

BLUE = Low skil

* Probabilistic forecasts of drought 6 months ahead

* Skill in the extra-tropics is very limited
° Multidimensional implications: drought — heatwaves — wildfires

* Adaptation need: skillful predictions months in advance
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How can we predict next season conditions if

we cannot predict the weather next week

Predictability
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atmosphere

(weather)

~/ days

— > Seasonal
predictions

~30 days

Time

Ocean holds most of the large-
scale predictability signal at

seasonal and interannual scales

Land holds predictability mostly
at local-scale for amplifying

large-scale variability

Lobelia.



Large-scale predictors for Europe

El Nifno (ENSO) North Atlantic Oscillation (NAO)
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Only with spring dry soil conditions the historic
2003 summer heat-wave can be reproduced

Local-scale predictors for Europe
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e Land-atmosphere feedbacks play a major role : i-j
amplifying large-scale signal leading to extremes -
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Miralles et al. 2019
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Can seasonal prediction be enhanced with data-driven methods?

Verification of summer prediction
for precipitation prediction

fairRPSS - prir - ECMWF SEASS5 vs ERAS5 - Seasonal Mean
Start date: 20200501 - Forecast period: months 1 to 3 - Reference period: 1993-2016
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ML-based predictions

BUT we only have
10s of years of

satellite data

and need 1000s of
observational years
for training!

Large-scale drivers

Wet . Dry

Local-scale drivers

’f @,

Heatwave ABL

Land
iccation
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An hybrid approach to predict summer conditions

PREDICTORS
Spring

GLOBAL PREDICTORS

o == . . .
y ? vai i YN R e N\
/ = Bl e
[ &5

i . -r‘\\
/5 -

SN
| v,

G500
SST o

DYNAMICAL PREDICTION

ELEVATION
LAND COVER
NDVI |o%

SM

MODEL

LARGE-SCALE
MODEL

LOCAL-SCALE

PREDICTION
Summer
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DROUGHT

- Climate simulations provide 1000s of year of physically consistent natural variability

> A pixel-based model allows for 1000s of spatially scattered training samples within 10s of years of

observational data



An hybrid approach to predict summer conditions

PREDICTORS (SPRING)

SPEI prediction from large-scale model

Large-scale

SPEI from ECMWF SEASS

Dynamical
Prediction

e Initial local conditions (Spring)
e Remote sensing observations

Local-scale

Al for Drought

for soil mositure, vegetation etc.

PREDICTION (SUMMER)

Summer Soil

Moisture Anomaly

Pixel-based model (Tree-based model)

Period 2000-2020 (4-year fold cross-validation)
0.25° spatial resolution

Europe domain

Target: Summer (SM standardized anomaly)
Benchmark: Persistence (Spring’ SM st anomaly)
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PREDICTORS MODEL PREDICTION
Spring Summer

GLOBAL PREDICTORS LOW-RES

Inputs Metrics

MMMMM

e SEASS SPEI3 prediction (Summer)

e SPEI3 future (Summer) e RMSE
e Initial local conditions (Spring): e R-square
o SPEI1 e MSSS: Mean Square Skill Score
o SPEI3 o 1 for perfect prediction
o Elevation o (0O=persistence
o Soil Moisture o <0 persistence is better than the
o Land cover prediction
o Temperature
o NDVI MsSSS ,=1-0L
o Potential Evapotranspiration ; MSE g

standardized anomaly
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A. Local model with only local factors as input

Input=local factors Persistence as predictions

Prediction RMSE: 0.83 Persistence RMSE: 0.95
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A. Local model with only Spring initial conditions =
local factors as input
1.0 @ Prediction wins

0.8

Raw prediction MSSS: 0.19

0.6

SMsurf

0.4

- 0.2

Comparing both T e @ Persistance wins
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B. Local model with only Summer SEASS SPEI3 (prediction)

1.0 @ Prediction wins

0.8

Raw predictiun MSSS U 29

SMsurf

0.4

- 0.2

- @ Persistance wins
v '
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C. Local model with Summer SEASS5 SPEI3 + initial conditions

1.0 @ Prediction wins

0.8

0.6

SMsurf

0.4

- 0.2

\/- 0.0 @ Persistance wins
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D. Local model with only the actual Summer’s SPEI3 (perfect)

1.0 @ Prediction wins

Raw prediction MSSS: 0.16

.u-l!"'"

- 0.2

- 0.0 Persistance wins
\ ®
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E. Local model with Actual Summer’s SPEI3 + initial

conditions
1.0 @ Prediction wins

0.8

Raw prediction MSSS: 0.63

f‘

0.6

SMsurf

0.4

- 0.2

@ Persistance wins
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Case studies (different sources of information for the model)

Spring Initial Conditions Summer SEASS5 SPEI3 (prediction) Actual Summer’s SPEI3

1.0

1.0

Raw prediction MSSS: -0.29

Raw prediction MS5S: 0.19
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- 0.2

Summer SEAS5 gﬁtrl:]i: e
fgnlzclli%;nlsr]ltlal i SPEI3 + initial
conditions
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Actual Summer’s SPEI3

Raw prediction MSSS: 0.16

Summer SEASS5 SPEI3 (prediction)

1.0

pring Initial Conditions

Raw prediction MSSS: -0.29
i " k. -

Raw prediction MS5S: 0.19
e ... =

Summer SEASS . gctual ,
SPEI3 + initial SPEI3 £ it
conditions 04 . initia
conditions
Al for Drought = == L 0.0

Lobelia.




Spring Local Factors

Raw prediction MSSS: 0.19 Raw prediction MSSS: 0.16
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Raw prediction MSSS: 0.32

Mmsss

Summer’s ERAS SPEI3 (perfect)

Local model results using
Summer’s ERA5 SPEI3 + local
initial factors as input features:

Raw prediction MSSS: 0.63

msss

- 0.2




Comparison with land-atmosphere feedback theory

1.0

Raw prediction MSSS: 0.02

Let’s see if has some relationship with land-atmosphere
feedbacks (soil moisture-temperature coupling factor)

ﬁ m=(H —Hp )T

month = 8

coupling factor

Miralles et al. 2012

Areas where the combined
ML model outperforms the
linear combination of
independent input models

©c © o
A o @
Coupling factor

o
N

o
o
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Conclusions

Al for Drought

Seasonal forecasting is complex

Observations of initial conditions are crucial for the improvement of seasonal
forecasts in Europe

Local conditions represented by satellite observations provide with valuable

predictability information not captured in climate models and not captured by
persistence

Machine learning is an efficient method for integrating initial conditions in the
prediction and mapping non-linear interactions with the atmospheric forcing

Lobelia.
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Thank you!

Laia Romero, Jesus Pena lzquierdo
and David Civantos on behalf of the
Al for drought team

laia@lobelia.earth
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