

International workshop on AI Foundation Model for EO 5-7 May 2025 | ESA ESRIN - Frascati, Italy

A physics-aware data-driven surrogate approach for fast atmospheric radiative transfer inversion

Sgattoni C.¹, Chung M.², Sgheri L.³

¹ Institute of BioEconomy (IBE), National Research Council (CNR), Florence, Italy

² Department of Mathematics, Emory University, Atlanta, GA, USA

delle Ricerche Istituto per la BioEconomia

³ Institute of Applied Mathematics (IAC), National Research Council (CNR), Florence, Italy

Introduction – FORUM mission

- □ FORUM¹ (Far-infrared Outgoing Radiation Understanding and Monitoring) is a Fourier Transform Spectrometer selected as the ninth Earth Explorer mission by the European Space Agency in 2019.
- □ It will provide interferometric measurements in the Far-InfraRed (FIR) spectrum (100-1600 cm⁻¹ region), constituting 50% of Earth's outgoing longwave flux.
- Accurate Top Of the Atmosphere measurements in the FIR are crucial for improving climate models.

¹L. Sgheri et al. "The FORUM end-to-end simulator project: architecture and results". In: Atmospheric Measurement Techniques 15.3 (2022), pages 573–604. doi: 10.5194/amt-15-573-2022. url: <u>https://amt.copernicus.org/articles/15/573/2022/</u>

Background

Direct problem: from the atmospheric status vector **x** find the simulated spectrum $\mathbf{y} = \mathbf{F}(\mathbf{x})$, with **F** known as **forward model**.

Inverse problem: from the measured spectrum **y** find the parameter vector **x** (retrieval vector) which minimizes ||y - F(x)||.

Retrieval – classical approach

□ Find the atmospheric parameters **x** (surface temperature, temperature, water vapor, ozone, surface spectral emissivity, clouds parameters) that best reconstruct the measured spectrum **y**.

VERY ILL-CONDITIONED PROBLEM

The problem is formulated as a Bayesian inference problem, solved using the OPTIMAL ESTIMATION METHOD²:

$$\mathbf{x}_{\text{OE}} = \arg\min_{\xi} \frac{1}{2} \left\| \mathbf{L}_{\mathbf{y}} (\mathbf{y} - \mathbf{F}(\xi)) \right\|_{2}^{2} + \frac{1}{2} \| \mathbf{L}_{a} (\xi - \mathbf{x}_{a}) \|_{2}^{2},$$

where $\mathbf{S}_{\mathbf{y}}^{-1} = \mathbf{L}_{\mathbf{y}}^{\mathrm{T}}\mathbf{L}_{\mathbf{y}}$ and $\mathbf{S}_{a}^{-1} = \mathbf{L}_{a}^{\mathrm{T}}\mathbf{L}_{a}$ are the inverses of the covariance matrices of the measurements \mathbf{y} and the a priori information \mathbf{x}_{a} , respectively.

The minimization is carried out using Gauss Newton + Levenberg-Marquardt technique.

²Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, https://doi.org/10.1142/3171, 2000.

New method scheme³ – clear sky

- 1) Approximation of the RT inverse operator using a linear operator, trained on a database of FORUM simulated measurements (**completely data-driven phase**).
- 2) Incorporation of a priori information into the data-driven solution (regularization technique).
- 3) Estimation of the optimal regularization parameters using a neural network, trained on a database of precomputed optimal parameters (**second training phase**).

³Sgattoni, C., Chung, T., Sgheri, L.: A physics-aware data-driven surrogate approach for fast atmospheric radiative transfer inversion, submitted to Inverse Problems, 2024 http://arxiv.org/abs/2410.22609

1. Data-driven model – clear sky

Approximation of the RT inversion with a linear operator **Z** trained on simulated FORUM measurements

Training set 1 (January and July 2021, 12:00, **clear sky**, 1708 cases all over the globe):

- > $X = [x_1, x_2, ..., x_N] \rightarrow N$ atmospheric scenarios (dim: 425x1708),
- > $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N]$ → N simulated FORUM spectra (dim: **4049**×1708).

$$\begin{aligned} \arg\min f(\mathbf{Z}) &= \arg\min \|\mathbf{X} - \mathbf{Z}\mathbf{Y}\|_{\mathrm{F}}^{2} \\ \frac{\delta f}{\delta \mathbf{Z}} &= -2\mathbf{L}_{\mathbf{y}}^{\mathrm{T}}\mathbf{L}_{\mathbf{y}}\mathbf{X}\mathbf{Y}^{\mathrm{T}} + 2\mathbf{L}_{\mathbf{y}}^{\mathrm{T}}\mathbf{L}_{\mathbf{y}}\mathbf{Z}\mathbf{Y}\mathbf{Y}^{\mathrm{T}} \\ \mathrm{A \ minimizer} \ \mathbf{\hat{\mathbf{Z}}} \ \text{of } f \ \text{solves} \ \mathbf{\hat{\mathbf{Z}}}\mathbf{Y}\mathbf{Y}^{\mathrm{T}} &= \mathbf{X}\mathbf{Y}^{\mathrm{T}}. \end{aligned}$$

We can express:

$$\widehat{Z} = XY^+ \Rightarrow \widehat{x} = \widehat{Z}y.$$

* Moore-Penrose pseudoinverse

Let **M** be a matrix of rank k with singular value decomposition $\mathbf{M} = \mathbf{U}\Sigma\mathbf{V}^{\mathrm{T}}$, the Moore-Penrose pseudoinverse of **M** is given by $\mathbf{M}^{+} = \mathbf{V}\widetilde{\Sigma}\mathbf{U}^{\mathrm{T}}$, $\widetilde{\Sigma} = \operatorname{diag}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \dots, \frac{1}{\sigma_{k}}, 0, \dots, 0\right)$.

1. Data-driven results – clear sky

Mean signed (blue) and unsigned (orange) errors for Test Set 1 (396 cases) globally:

1. Data-driven results – clear sky

Signed error for case 25 in Test Set 1:

2. Tikhonov regularization – clear sky

A. Bilevel Optimization Problem: Inner Problem

Additional a priori information:

$$\mathbf{x}_{\lambda} = \arg\min_{\boldsymbol{\xi}} \frac{1}{2} \left\| \mathbf{L}_{\mathbf{x}} \big(\boldsymbol{\xi} - \hat{\mathbf{Z}} \mathbf{y} \big) \right\|_{2}^{2} + \frac{1}{2} \left\| (\boldsymbol{\Lambda} \, \mathbf{L}_{a} (\boldsymbol{\xi} - \mathbf{x}_{a}) \|_{2}^{2} \text{, with} \right\|_{2}^{2}$$

- Λ is a diagonal regularization matrix, where $\lambda = \text{diag}(\Lambda)$,
- $S_x^{-1} = L_x^T L_x$ is the inverse of the experimental covariance matrix,
- \mathbf{x}_a has been generated from covariance matrix \mathbf{S}_a^4 , with $\mathbf{S}_a^{-1} = \mathbf{L}_a^T \mathbf{L}_a$.

B. Bilevel Optimization Problem: Outer Problem

Optimal Regularization Parameters: for each of the J cases in Test Set 1 (now renamed Training Set 2), compute :

$$\lambda_{j}^{opt} = \arg\min_{\lambda} \frac{\left\| (x_{\lambda})_{j} - x_{j} \right\|_{2}}{\left\| x_{j} \right\|_{2}} \text{,} \quad j = 1, \cdots, J.$$

Optimization Method: interior points method.

⁴defined by the UK MetOffice for assimilation of IASI products into the operational Numerical Weather Prediction (NWP) system.

- \Box Assume there exists a well-defined mapping $\widetilde{\Phi}(\widehat{x} x_a) = \lambda$.
- lacksquare Set a NEURAL NETWORK $m \Phi$ parametrized by m heta to approximate $\widetilde{m \Phi}$.
- Given training data $\left((\hat{\mathbf{x}}_j (\mathbf{x}_a)_j), \boldsymbol{\lambda}_j^{opt}\right)_{j=1}^J$ the following equation is solved:

unique network for all 5 components

$$\boldsymbol{\theta} = \arg\min_{\boldsymbol{\eta}} \frac{1}{J} \sum_{j=1}^{J} \left\| \boldsymbol{\Phi} \left((\hat{\mathbf{x}}_{j} - (\mathbf{x}_{a})_{j}), \boldsymbol{\eta} \right) - \boldsymbol{\lambda}_{j}^{\text{opt}} \right\|^{2}$$

Neural Network INPUT: $\hat{\mathbf{x}} - \mathbf{x}_a$ Neural Network OUTPUT (prediction): $\log(\lambda^{nn})$ Neural Network ARCHITECTURE:3 hidden layers $[425] \rightarrow [15] \rightarrow [10] \rightarrow [5] \rightarrow [5]$

Results - clear sky

Mean signed (bold) and unsigned (dashed) errors for Test Set 2 (402 cases) globally related to: data-driven solution \hat{x} , regularized solution x_{λ} , a priori errors

Results - clear sky

Signed errors for case 15 in Test Set 2 related to: data-driven solution \hat{x} , regularized solution x_{λ} , a priori errors

Computational time – clear sky

- \Box Training 1 \rightarrow 0.178 seconds (offline stage)
- \Box Training 2 \rightarrow 128.984 seconds (offline stage)
- \Box Testing data-driven phase \rightarrow about 0.0008 seconds for 1 case
- \Box Testing reg. par. estimation \rightarrow about 0.007 seconds for 1 case
- \Box Testing entire solution scheme \rightarrow about 0.05 seconds for 1 case

New variables – all sky

Retrieval variables:
$$\mathbf{x} = \left[T^0, T, \mathbf{w}_{vap}, \mathbf{o}, \mathbf{e}, \mathbf{c}_{liq}, \mathbf{r}_{liq}, \mathbf{r}_{liq}, \mathbf{r}_{lie} \right]^T \in \mathbb{R}^{722}$$

expansion of X dimension from 425 to 722

Input variables: $\mathbf{y} = [\mathbf{y}_{\text{lon}}, \mathbf{y}_{\text{lat}}, \mathbf{d}_{\text{loc}}, \mathbf{p}, \mathbf{s}]^{\text{T}} \in \mathbb{R}^{4233}$

- $T^0, y_{lon}, y_{lat}, d_{loc}, h_{loc}, \tau_{liq}, \tau_{ice} \in R$,
- $T, w_{vap}, \mathbf{o}, \mathbf{c}_{liq}, \mathbf{c}_{ice}, \mathbf{r}_{liq}, \mathbf{r}_{ice}, \mathbf{p} \in \mathbb{R}^{60}$
- $e \in R^{301}$ (from 100 cm⁻¹ to 1600 cm⁻¹ with stepsize 5 cm⁻¹),
- $s \in R^{4169}$ (from 100 cm⁻¹ to 1600 cm⁻¹ with stepsize 0.36 cm⁻¹).

expansion of Y dimension from 4049 to 4233

Architecture⁵ – all sky

- Joint learning
- **Batch learning** (batch_size = 64)
- **Epochs** (10k)
- Training data: shuffled randomly
- Testing data: original order
- Loss function:

$$\begin{split} E &= w_{xx}E_{xx} + w_{yy}E_{yy} + w_{xy}E_{xy} + w_{yx}E_{yx,} \quad \text{ with } \\ w_{xx} &= w_{yy} = w_{yx} = 1 \text{ and } w_{xy} = 0.5 \end{split}$$

- ADAM (ADAptive Moment Estimation) Optimization

Results – all sky

Case 6 in Test Set

Physical coherence – all sky

Retrieved c_{liq} , c_{ice} , r_{liq} , r_{ice} are not physically consistent \rightarrow second training phase!

The following training is activated at each layer 1 only when the content and the radius are not consistent!

We have new parameters keeping the others fixed \rightarrow same procedure and settings as in the first training.

Loss function (with a Coherence term): $E = MSE_1 + MSE_2 + MSE_3 + MSE_4 + w_{coh}C$

$$C = \frac{1}{N} \sum \left| \sigma \left(10 \ c_{liq} \right) - \sigma \left(10 \ r_{liq} \right) \right| + \frac{1}{N} \left| \sigma (10 \ c_{ice}) - \sigma (10 \ r_{ice}) \right|, \quad w_{coh} = 100, \ \sigma \text{ sigmoid function.}$$

Results – all sky

Results - Case 6 in Test Set

Computation times - all sky

- Training the first 4 models \rightarrow it depends on the epochs and laptops \rightarrow some hours Training the last 4 networks \rightarrow it depends on the epochs and laptops \rightarrow some minutes
- Testing → Total time taken for predictions (2504): 1.61 seconds Average time per batch (64): 0.0403 seconds

*The computational times refer to my personal computer, which is equipped with an AMD Ryzen 5 7530U processor with Radeon Graphics.

Take-home messages

Instantaneous Method for Retrieval in Clear-Sky:

- □ First approximation using a machine-learning approach (pseudoinverse operator).
- □ Incorporation of a priori physical information through regularization.
- Machine-learning approach for estimating regularization parameters (feedforward neural network).
- Applied to FORUM simulated measurements; data generated with line-by-line code.

Instantaneous Method for Retrieval in All-Sky:

- □ Machine-learning architecture combining autoencoders and linear mapping.
- Introduction of physical constraints via additional neural networks (feedforward NN) and a coherence-forcing term.
- Applied to FORUM simulated measurements (data produced using a fast radiative transfer code) and real data from other instruments.

Thank you for your attention!