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Introduction – FORUM mission

❑ FORUM1 (Far-infrared Outgoing Radiation Understanding and Monitoring) is a Fourier 
Transform Spectrometer selected as the ninth Earth Explorer mission by the European 
Space Agency in 2019. 

❑ It will provide interferometric measurements in the Far-InfraRed (FIR) spectrum (100-
1600 cm-1 region), constituting 50% of Earth’s outgoing longwave flux.

❑ Accurate Top Of the Atmosphere measurements in the FIR are crucial for improving 
climate models.

1 L. Sgheri et al. “The FORUM end-to-end simulator project: architecture and results”. In: Atmospheric Measurement Techniques 15.3 (2022), pages 573–604. doi: 
10.5194/amt-15-573-2022. url: https://amt.copernicus.org/articles/15/573/2022/ 

https://amt.copernicus.org/articles/15/573/2022/


Background

𝐦𝐢𝐧 ‖𝒚 − 𝑭 𝒙 ‖

Direct problem: from the atmospheric status vector x find the simulated spectrum 𝐲 =
𝐅 𝐱 , with F known as forward model.

Inverse problem: from the measured spectrum y find the parameter vector x (retrieval 
vector) which minimizes 𝒚 − 𝑭 𝒙 .



Retrieval – classical approach

❑ Find the atmospheric parameters 𝐱 (surface temperature, temperature, water vapor, ozone, surface 
spectral emissivity, clouds parameters) that best reconstruct the measured spectrum 𝐲.

VERY ILL-CONDITIONED PROBLEM

❑ The problem is formulated as a Bayesian inference problem, solved using the OPTIMAL ESTIMATION 
METHOD2: 

 𝐱OE = arg min
𝛏
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where  𝐒𝐲
−1 = 𝐋𝐲

T𝐋𝐲 and 𝐒a
−1 = 𝐋a

T𝐋a are the inverses of the covariance matrices of the measurements 𝐲 and 
the a priori information 𝒙𝑎, respectively.

❑ The minimization is carried out using Gauss Newton + Levenberg-Marquardt technique.

2 Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, https://doi.org/10.1142/3171, 2000.



New method scheme3 – clear sky

1) Approximation of the RT inverse operator using a linear operator, trained on a database of FORUM 
simulated measurements (completely data-driven phase).

2) Incorporation of a priori information into the data-driven solution (regularization technique).

3) Estimation of the optimal regularization parameters using a neural network, trained on a database of pre-
computed optimal parameters (second training phase).

A diagram of a diagram

Description automatically generated

3 Sgattoni, C., Chung, T., Sgheri, L.: A physics-aware data-driven surrogate approach for fast atmospheric radiative transfer inversion, submitted to Inverse Problems, 
2024 http://arxiv.org/abs/2410.22609



1. Data-driven model – clear sky

❑ Approximation of the RT inversion with a linear operator Z trained on simulated FORUM measurements

❑ Training set 1 (January and July 2021, 12:00, clear sky, 1708 cases all over the globe):
➢ X = 𝐱1, 𝐱2, … , 𝐱N   →   N atmospheric scenarios (dim: 425x1708),
➢ Y = 𝐲1, 𝐲2, … , 𝐲N    →   N simulated FORUM spectra (dim: 4049x1708).

arg min
𝐙

f 𝐙 = arg min
𝐙

𝐗 − 𝐙𝐘 F
2

δf

δ𝐙
= −2𝐋𝐲

T𝐋𝐲𝐗𝐘T + 2𝐋𝐲
T𝐋𝐲𝐙𝐘𝐘T 

A minimizer ෠𝐙 of f solves ෠𝐙𝐘𝐘T = 𝐗𝐘T.

We can express:
෡𝒁 = 𝐗𝐘+  ➔  ො𝐱 = ෠𝐙𝐲.

* Moore-Penrose pseudoinverse
Let M be a matrix of rank k with singular value decomposition 𝐌 = 𝐔𝚺𝐕T, the Moore-Penrose pseudoinverse of M is given by

 𝐌+= 𝐕 ෩𝚺 𝐔T,
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1. Data-driven results – clear sky

Mean signed (blue) and unsigned (orange) errors for Test Set 1 (396 cases) globally:



1. Data-driven results – clear sky

Signed error for case 25 in Test Set 1:



2. Tikhonov regularization – clear sky 

A. Bilevel Optimization Problem: Inner Problem
❑ Additional a priori information:

 𝐱𝛌 = arg min
𝛏
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2 , with

- 𝚲 is a diagonal regularization matrix, where 𝛌 = diag 𝚲 ,

- 𝐒𝐱
−1 = 𝐋𝐱

T𝐋𝐱 is the inverse of the experimental covariance matrix,

- 𝐱a has been generated from covariance matrix 𝐒a
4, with 𝐒a

−1 = 𝐋a
T𝐋a.

B. Bilevel Optimization Problem: Outer Problem
❑ Optimal Regularization Parameters: for each of the J cases in Test Set 1 (now renamed Training Set 2), compute :

𝛌j
opt

 = arg min
𝛌

𝐱𝛌 j−𝐱j 2

𝐱j 2

 , j = 1, ⋯ , J.

❑ Optimization Method: interior points method.

4defined by the UK MetOffice for assimilation of IASI products into the operational Numerical Weather Prediction (NWP) system.



3. Regularization parameter estimation 
clear sky 

❑ Assume there exists a well-defined mapping ෩𝚽 ෝ𝒙 − 𝒙𝑎 = 𝝀. 

❑ Set a NEURAL NETWORK 𝚽 parametrized by 𝛉 to approximate ෩𝚽.

❑ Given training data (ො𝐱j− 𝐱a j), 𝛌j
opt

j=1

J

 the following equation is solved:

𝜽 = arg min
𝛈

1

J
෍

𝑗=1

𝐽

𝚽 (ො𝐱j− 𝐱a j), 𝜼 − 𝛌j
opt 2

                   Neural Network INPUT:                                    ො𝐱 − 𝐱𝑎  

                   Neural Network OUTPUT (prediction):  log 𝛌nn

                   Neural Network ARCHITECTURE:                3 hidden layers         [425] → [15] → [10] → [5] → [5]

unique network for 
all 5 components



Results - clear sky 

Mean signed (bold) and unsigned (dashed) errors for Test Set 2 (402 cases) globally related to:
data-driven solution ෝ𝒙, regularized solution 𝒙𝝀, a priori errors



Results - clear sky 

Signed errors for case 15 in Test Set 2 related to: data-driven solution ෝ𝒙, regularized solution 𝒙𝝀, a priori errors



❑ Training 1 → 0.178 seconds (offline stage)
❑ Training 2 → 128.984 seconds (offline stage) 
❑ Testing - data-driven phase → about 0.0008 seconds for 1 case
❑ Testing - reg. par. estimation → about 0.007 seconds for 1 case
❑ Testing - entire solution scheme → about 0.05 seconds for 1 case

Computational time – clear sky



New variables – all sky

Retrieval variables: 𝐱 = T0, 𝐓, 𝐰vap, 𝐨, 𝐞, 𝐜liq, 𝐜ice, 𝐫liq, 𝐫ice
T

∈ R722

expansion of X dimension from 425 to 722

Input variables: 𝐲 = ylon, ylat, dloc, hloc, 𝐩, 𝐬 T ∈ R4233

- 𝑇0, 𝑦𝑙𝑜𝑛, 𝑦𝑙𝑎𝑡, 𝑑𝑙𝑜𝑐 , ℎ𝑙𝑜𝑐, 𝜏𝑙𝑖𝑞 , 𝜏𝑖𝑐𝑒 ∈ 𝑅,

- 𝑻, 𝒘𝑣𝑎𝑝, 𝐨, 𝐜liq, 𝐜ice, 𝐫liq, 𝐫ice, 𝐩 ∈ 𝑅60 

- 𝒆 ∈ 𝑅301 (from 100 cm-1 to 1600 cm-1 with stepsize 5 cm-1), 

- 𝒔 ∈ 𝑅4169 (from 100 cm-1 to 1600 cm-1 with stepsize 0.36 cm-1).

expansion of Y dimension from 4049 to 4233



Architecture5 – all sky

5 Matthias Chung et al 2024 Mach. Learn.: Sci. Technol. 5 045055 DOI: 10.1088/2632-2153/ad95dd

- Joint learning
- Batch learning (batch_size = 64)
- Epochs (10k)
- Training data: shuffled randomly
- Testing data: original order
- Loss function: 

E = wxxE𝐱𝐱 + wyyE𝐲𝐲 + wxyE𝐱𝐲 + wyxE𝐲𝐱, with        
wxx = wyy = wyx = 1 and wxy = 0.5

- ADAM (ADAptive Moment Estimation) Optimization



Results – all sky

Case 6 in Test Set



Physical coherence – all sky

Retrieved 𝐜liq, 𝐜ice, 𝐫liq, 𝐫ice are not physically consistent→ second training phase!

The following training is activated at each layer l only when the content and the radius are not consistent! 

4 Feedforward neural networks (MLP, fully-connected):                                       [4]  →  [16]  →  [8]  →  [1]

LINEAR 

+ ReLU

LINEAR 

+ ReLU

LINEAR 

+ ReLU

INPUT: 𝐜l inp
or 𝐫l inp

, 𝐩l, 𝐓l, 𝐰vap
l OUTPUT: 𝐜l new

or 𝐫l new

We have new parameters keeping the others fixed → same procedure and settings as in the first training.

Loss function (with a Coherence term):    E = MSE1 + MSE2 + MSE3 + MSE4 + wcohC 

C = 
𝟏

𝑁
∑ 𝝈 10 𝒄𝒍𝒊𝒒 − 𝝈 10 𝒓𝒍𝒊𝒒 +

𝟏

𝑁
𝝈 10 𝒄𝒊𝒄𝒆 − 𝝈 10 𝒓𝒊𝒄𝒆 ,    𝑤𝑐𝑜ℎ = 100, 𝝈 sigmoid function.



Results – all sky

Results - Case 6 in Test Set



Computation times - all sky

Training the first 4 models → it depends on the epochs and laptops → some hours
Training the last 4 networks → it depends on the epochs and laptops → some minutes

Testing  → Total time taken for predictions (2504): 1.61 seconds
                      Average time per batch (64): 0.0403 seconds

*The computational times refer to my personal computer, which is equipped with an AMD Ryzen 5 7530U processor with Radeon Graphics.



Take-home messages

❑ Instantaneous Method for Retrieval in Clear-Sky:
❑ First approximation using a machine-learning approach (pseudoinverse operator).
❑ Incorporation of a priori physical information through regularization.
❑ Machine-learning approach for estimating regularization parameters (feedforward neural 

network).
❑ Applied to FORUM simulated measurements; data generated with line-by-line code.

❑ Instantaneous Method for Retrieval in All-Sky:
❑ Machine-learning architecture combining autoencoders and linear mapping.
❑ Introduction of physical constraints via additional neural networks (feedforward NN) and a 

coherence-forcing term.
❑ Applied to FORUM simulated measurements (data produced using a fast radiative transfer 

code) and real data from other instruments.

Thank you for your attention!
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