

Comparison between EarthCARE and ATR42 measurements and products during the MAESTRO field campaign

E. FRANCOIS¹ - J. DELANOË¹ - S. BOUNISSOU¹ - S. BONY² - MAESTRO Team Speaker : N. FEUILLARD ¹

CNIS LATMOS

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

Introduction

CalVal Flights for MAESTRO

- MAESTRO Mesoscale Organisation of Tropical Convection, PI: Sandrine Bony (LMD)
 - Operations out of Sal (Cape Verde), 10 Aug 10 Sept 2024 → 86 F/H (24 flights)
- MORECALVAL- POST MAESTRO, PI: J. Delanoë (LATMOS)
 - Operations out of Toulouse (France), **13 March 4 April 2025** → (about 9 flights expected)
 - CalVal campaign and scientific legs aimed to study clouds organisation at mid-latitudes
 - Same payload as MAESTRO
 - 2 w band cloud radars deployed on the ground (Lannemezan super site and Francazal)

Airborne Payload

- RASTA, looking up and down 6 antennas (Doppler W-band)
- LNG, HRSL 355nm (backscatter 532&1064), 2 pointing directions
- BASTAir, sideward looking W-band Doppler radar
- aWALI, sideward looking 355nm raman lidar
- Large in-situ payload

	Instruments \ Objectives	Aerosols	Clouds/precip	Water vapour/ Temp	Wind	Turbulence	Surface
Radar / lidar	LNG				cloud/aerosol		
	RASTA (6 antennas)				cloud/precipitation	cloud/precipitation	
	BASTA				cloud/precipitation	cloud/precipitation	
	aWALI			heterog eneities			
In-situ	FCDP/HVPS/2DS/U HSAS/CVI/NP/FSSP						
	Aircraft's baseline information				clear sky/cloud/aerosol		
Radiometry	CLIMAT						SST
	Pyrano-& pyrgeometers						

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

Airborne Lidar : LNG

LNG

- RALI platform → radar-lidar synergy (RASTA/BASTA)
- Upward or downward pointing
- 3 wavelengths : 1064 nm, 532 nm, 355 nm
- High Spectral Resolution at 355 nm
 - ຩ Mie attenuated backscatter
 - └→ Rayleigh attenuated backscatter

lidars	ATLID	LNG
Vertical resolution	103 m (from the ground to 20 km)	30 m (native 1.8 m)
Horizontal resolution	282 m	400 m (400 shots integrated)
Frequency	51 Hz	100 Hz

L2 ATLID baseline :

- ECA_EXAD_ATL_EBD_2A
- ECA_EXAD_ATL_FM_2A
- ECA_EX<mark>AD</mark>_ATL_AER_2A

Reference altitude : Mean Sea Level

Frame E

Flight summary

Date	Flight #	Take-off [TO] / Landing [LA]/ Meeting point [MP] times	Legs (convention from MAESTRO)	Comments
20240811	F24	TO 14:33:45.07Z LA 18:13:42.50Z MP 15:49	H1 6466m, time [s]: 54995.0 55718.0 H2 6467m, time [s]: 56379.0 57801.0	 Almost no radar signal (instrument OK) Issue with LNG-lidar (part of track missing) In-situ data OK
20240813	F25	TO 14:20:43.95Z LA 17:37:26.19Z MP 15:40	H1 6481m, time [s]: 54246.0 55595.0 H2 6483m, time [s]: 55898.0 57218.0	 Almost no radar signal (instrument OK) LNG OK, good aerosol layer and tiny liquid clouds In-situ data OK Track slightly off due to issue in prediction
20240820	F31	TO 14:03:31.21Z LA 17:33:55.94Z MP 15:50	MAESTRO 20240813 F25	 No radar signal (instrument OK) LNG OK, good aerosol layer and tiny liquid clouds In-situ data OK
20240822	F32	TO 13:55:27.23Z LA 17:32:49.48Z MP 15:41	17.5	 No radar signal (instrument OK) LNG OK, good aerosol layer and tiny liquid clouds In-situ data OK
20240829	F38 X	TO 13:52:13.14Z LA 17:40:57.88Z MP 15:49	H H H H H H H H H H H H H H H H H H H	 No radar signal (instrument OK) No LNG due to computer issue In-situ data OK
20240831	F40	TO 13:57:37.89Z LA 17:30:33.43Z MP 15:38	H 16.0 H -23.25 -23.00 -22.75 -22.50 -22.00 -21.75 -21.50 Longitude [°]	 Radar and lidar signals In-situ data OK 5

F25 2024/08/13

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

F25: Particle backscatter coefficient

ATLID particle backscatter coefficient

LNG 355 nm particle backscatter coefficient

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

F25: Particle extinction coefficient and lidar ratio

Particle extinction coefficient 355 nm

Lidar ratio 355 nm

Marine aerosol in Cape Verde : 20.4 +/- 3.4 sr Sahran Air Layer : 64.8 +/- 10.2 sr Haarig et al. (2025)

F25: Target classification

MORECALVAL: 2025/03/15 daytime

MORECALVAL: 2025/03/15 daytime

Raw data for LNG

EXAE_ATL_NOM_1B for ATLID

20250313 04522D ECA EXAE ATL NOM 1B

Conclusion

- Consistent comparisons (same orders of magnitude) of particle backscatter coefficient, particle extinction and lidar ratio despite the difference of vertical resolution between each instrument.
- Consistency comparisons of classification but there are some discrepancies with the surface or subsurface classification instead of warm liquid cloud.

MORECALVAL:

- 3 flights already done
- A flight is scheduled tonight with a meeting at 01h10 UTC
- Early data are encouraging for the rest of the campaign

