GeoLangBind: Unifying Earth Observation with Agglomerative Vision-Language Foundation Models

Zhitong Xiong

Technical University of Munich Presented by: Zhitong Xiong

05.05.2025

The Challenge: Diverse Earth Observation (EO) Data

- Earth Observation (EO) data is vast and varied:
 - Optical (RGB)
 - Radar (SAR)
 - Multispectral (MSI)
 - Hyperspectral (HSI)
 - Infrared (IR)
 - Elevation (DEM)
- **Problem:** Heterogeneity makes unified analysis difficult.
- Gap: Prior models often focus on single modalities or lack robust language alignment for interpretation.

Goal: Bridge heterogeneous data via language

Bridging Heterogeneous Remote Sensing Data through Language Representations

Introducing GeoLangBind: A Unified Approach

- **Goal:** Develop a foundation model (**GeoLangBind**) to unify diverse EO modalities using language as a common bridge.
- Core Idea: Align different sensor data into a shared language embedding space.

- **Goal:** Develop a foundation model (**GeoLangBind**) to unify diverse EO modalities using language as a common bridge.
- **Core Idea:** Align different sensor data into a shared language embedding space.
- Key Contributions:
 - New large-scale dataset: GeoLangBind-2M.
 - Novel Architecture: Modality-aware Knowledge Agglomeration (MaKA) & Wavelength-aware Encoder.
 - Efficient Training: Progressive Weight Merging strategy.
 - Result: State-of-the-art (SOTA) **zero-shot performance** across many EO tasks.

The GeoLangBind-2M Dataset

- Need: Lack of comprehensive, multimodal EO datasets with aligned text descriptions.
- Solution: Created GeoLangBind-2M.
- Content:
 - ~2 million image-text pairs.
 - Spans 6 key modalities:
 - RGB (Optical)
 - Sentinel-1 SAR (Radar)
 - Sentinel-2 MSI (Multispectral)
 - EnMAP HSI (Hyperspectral)
 - Infrared (Thermal)
 - Elevation (DEM)

Dataset Examples

Visualization of data samples from our GeoLangBind-2M. The dataset includes imagery from six different sensors and modalities: Sentinel-2 multispectral, Sentinel-1 SAR, EnMAP hyperspectral, elevation maps, infrared imagery, and aerial imagery. Each sample is paired with textual descriptions capturing key land cover types, objects, and geographic features.

GeoLangBind Architecture Overview

Figure: Overall model architecture of GeoLangBind. Key components highlighted.

Xiong et al. (TUM)

05.05.2025

< ロ > < 同 > < 回 > < 回 >

Key Technique 1: Modality-aware Knowledge Agglomeration (MaKA)

• **Purpose:** Enhance fine-grained image understanding beyond simple contrastive alignment. Improve feature quality.

Key Technique 1: Modality-aware Knowledge Agglomeration (MaKA)

- **Purpose:** Enhance fine-grained image understanding beyond simple contrastive alignment. Improve feature quality.
- How it works:
 - Leverages multiple pre-trained 'teacher' models (SigLIP, DINOv2, ViT).
 - Uses input **wavelengths** as modality-specific condition to guide knowledge distillation.
 - Employs wavelength-aware prompts and conditional layer normalization.
 - Uses feature-matching loss (*L_{match}*) to align student (GeoLangBind) features with teacher features.
- This module is crucial for adapting powerful pre-trained models to the specifics of diverse EO data.
- (Refers to MaKA module shown in Figure 3 on previous slide).

• • • • • • • • • • • •

• **Problem Addressed:** Significant data imbalance (RGB vs. other modalities) can hinder joint training.

- Problem Addressed: Significant data imbalance (RGB vs. other modalities) can hinder joint training.
- Strategy: More effective than simply mixing all data together.
 - Train separate models: GeoLangBind on RGB (θ_{rgb}), GeoLangBind on other modalities (θ_{others}).
 - 2 Perform two-stage linear weight merging using task arithmetic:
 - Merge original SigLIP (θ_{siglip}) with RGB model:
 - $heta^* = (1 m_1) heta_{siglip} + m_1 heta_{rgb}$ (Optimal $m_1 = 0.9$)

- Problem Addressed: Significant data imbalance (RGB vs. other modalities) can hinder joint training.
- Strategy: More effective than simply mixing all data together.
 - Train separate models: GeoLangBind on RGB (θ_{rgb}), GeoLangBind on other modalities (θ_{others}).
 - Perform two-stage linear weight merging using task arithmetic:
 - Merge original SigLIP (θ_{siglip}) with RGB model:

$$heta^* = (1 - m_1) heta_{siglip} + m_1 heta_{rgb}$$
 (Optimal $m_1 = 0.9$)

• Merge intermediate model (θ^*) with 'Others' model:

$$heta = (1 - m_2) heta^* + m_2 heta_{others}$$
 (Optimal $m_2 = 0.5$)

- Problem Addressed: Significant data imbalance (RGB vs. other modalities) can hinder joint training.
- Strategy: More effective than simply mixing all data together.
 - Train separate models: GeoLangBind on RGB (θ_{rgb}), GeoLangBind on other modalities (θ_{others}).
 - 2 Perform two-stage linear weight merging using task arithmetic:
 - Merge original SigLIP (θ_{siglip}) with RGB model:

$$heta^* = (1 - m_1) heta_{siglip} + m_1 heta_{rgb}$$
 (Optimal $m_1 = 0.9$)

- Merge intermediate model (θ^*) with 'Others' model:
 - $\theta = (1 m_2)\theta^* + m_2\theta_{others}$ (Optimal $m_2 = 0.5$)
- **Benefit:** Efficiently combines knowledge from different modality subsets and base models.

Result 1: Improved Cross-Modality Alignment

Finding: GeoLangBind significantly improves feature alignment across diverse EO modalities compared to standard vision-language models like SigLIP. Explanation:

- Circles: Language features
- Triangles: Image features
- Colors: Different modalities
- Left (SigLIP): Gap between language and non-RGB modalities.
- Right (GeoLangBind): Tighter clustering, better alignment.

t-SNE Visualization Comparison

t-SNE visualization of feature distributions for the original SigLIP features (left) and GeoLangBind-L-384 model (right). Circle markers represent language features, while triangle markers represent image features. Finding: GeoLangBind produces features that capture finer spatial details and semantic structure compared to previous EO models. Explanation:

- Heatmaps visualize model attention/features.
- GeoLangBind (left in pairs) shows sharper activation, better focus on objects (e.g., buildings, fields, cattle).
- Baselines (RemoteCLIP, SkyScript) show more diffuse activations.

Feature Heatmap Comparison

Visual comparison of deep features from RemoteCLIP, Skyscript, and GeoLangBind model.

Result 3: State-of-the-Art Zero-Shot Performance

- **Finding**: GeoLangBind achieves superior performance on downstream tasks *without* task-specific fine-tuning.
- Evaluation Scope: Tested on 23 diverse EO datasets.
- Tasks:
 - Scene Classification (e.g., EuroSAT, AID, RESISC45)
 - Fine-grained Classification (e.g., PatternNet)
 - Semantic Segmentation (e.g., Potsdam, Vaihingen via GeoBench)
 - Cross-Modal Retrieval (Image-Text and Text-Image)

Result 3: State-of-the-Art Zero-Shot Performance

- **Finding**: GeoLangBind achieves superior performance on downstream tasks *without* task-specific fine-tuning.
- Evaluation Scope: Tested on 23 diverse EO datasets.
- Tasks:
 - Scene Classification (e.g., EuroSAT, AID, RESISC45)
 - Fine-grained Classification (e.g., PatternNet)
 - Semantic Segmentation (e.g., Potsdam, Vaihingen via GeoBench)
 - Cross-Modal Retrieval (Image-Text and Text-Image)

• Key Result Example (Scene Classification - Average Accuracy):

Table 2. Zero-shot comparison of various models on scene and fine-grained classification tasks. Bold values indicate the best performance.

NIT:	Model	Score classification									Fine-grained classification		
		SkyScript	AID	EuroSAT	fMoW	Million-AID	PatternNet	RESISC	RSI-CB	Avg	Roof shape	Smoothness	Surface
Base	CLIP-original	40.16	69.55	32.11	17.62	57.27	64.09	65.71	41.26	49:66	31.59	26.80	61.36
	Human-curated captions	40.03	71.05	33.85	18.02	57.48	66.56	66.04	42.73	50.82	28.50	27.80	60.91
	RemoteCLIP	27.06	87.05	30.74	11.13	46.26	56.05	67.88	44.55	49.09	30.50	21.00	43.86
	CLIP-laion-RS	40.77	60.55	37.63	19.16	56.99	64.79	64.63	41.79	50.59	28.83	27.60	62.27
	SkyCLIP-50	52.98	70.90	33.30	19.24	62.69	72.18	00.07	46.20	53.02	25.00	38.00	67.73
	GeoLangBind-B-224	70.39	77.60	52.30	20.17	64.91	76.68	67.21	49.53	59.85	44.33	28.00	72.73
Large	CLIP-original	55.06	69.25	41,89	26.19	57.88	71.39	66.70	43.02	53,76	37.50	25.40	42.73
	Human-curated captions	56.09	72.95	41.96	26.33	58.47	74.86	68.70	44.60	55.41	37.00	26.60	40.00
	RemoteCLIP	34.40	70.85	27.81	16.77	47.20	61.91	74.31	50.79	49.99	34.33	34.20	55.45
	CLIP-baion-RS	58.81	71.70	54.30	27.23	60.77	72.68	71.21	48.21	\$7.82	40.50	37.60	53.41
	SkyCLIP-20	67.94	71.95	53.63	28.04	65,68	78.62	70,70	50.03	59,98	44.83	26,80	61.36
	SkyCLIP-30	60.08	72.15	52.44	27.77	66.40	79.67	70.77	50.19	\$0,00	46.17	30.80	64.32
	SkyCLIP-50	20.89	71.70	51.33	27.12	67.45	80.88	70.94	50.09	59.93	46.83	35.80	67.50
	GeoLangBind-L-384	76.83	75.50	59.04	29.10	70.16	80.17	73.15	51.62	64.45	61.83	26.00	81.36

Xiong et al. (TUM)

• **Summary:** GeoLangBind successfully unifies diverse EO data modalities using language as an effective bridge.

< 47 ▶

э

- **Summary:** GeoLangBind successfully unifies diverse EO data modalities using language as an effective bridge.
- Key Innovations Recap:
 - Large-scale multimodal GeoLangBind-2M dataset.
 - Wavelength-aware encoder for flexible input handling.
 - MaKA module for enhanced fine-grained features via distillation.
 - Progressive weight merging for efficient and effective training.

- **Summary:** GeoLangBind successfully unifies diverse EO data modalities using language as an effective bridge.
- Key Innovations Recap:
 - Large-scale multimodal GeoLangBind-2M dataset.
 - Wavelength-aware encoder for flexible input handling.
 - MaKA module for enhanced fine-grained features via distillation.
 - Progressive weight merging for efficient and effective training.
- Impact: Achieved State-of-the-Art zero-shot performance, providing a powerful and versatile tool for EO analysis.
- Availability: Dataset and pre-trained models will be made publicly available.

Thank You!

Questions?

Zhitong Xiong zhitong.xiong@tum.de

Xiong et al. (TUM)

GeoLangBind

05.05.2025

Image: Image:

포 문 문