

Assessing CPR radar reflectivity and doppler products with airborne observations from the PERCUSION campaign
F. Ewald¹, S. Groß¹, T. Kubota², S. Aoki² and the PERCUSION team
1) German Aerospace Center (DLR), Institut of Atmospheric Physics, Germany
2) Japan Aerospace Exploration Agency (JAXA), Earth Observation Research Center, Tsukuba-city, Japan

PERCUSION

<u>Persistent EarthCARE underflight studies</u> of the <u>I</u>TCZ and <u>o</u>rganized convectio<u>n</u>

PERCUSION – A campaign with a focus on validation Persistent EarthCARE underflight studies of the ITCZ and organized convection

JAXA @esa

.....

Campaign period 09 Aug – 19 Nov 2024

Campaign locations

- Cape Verde / Sal: ITCZ, Aerosol
- Barbados: ITCZ, Convective organization
- Germany: Dedicated validation flights

Campaign duration – 9 weeks

- 296 flight hours (incl. transfer and certification)
- 28 Scientific flights: 11 (Sal), 10 (Barbados), 7 (Germany)
- ► 33 EarthCARE / 4 PACE underpasses
- Embedded within the ORCESTRA campaign:

MAESTRO SAFIRE ATR-42

CELLO INCAS King Air

ORCESTRA

BOW-TIE / PICCOLO RV METEOR / SEA-Pol

HALO – the High Altitude and Long Range Aircraft

JAXA @esa

The HALO remote sensing payload – a unique validation asset

 G550, max. alt 15 km / max. range: 8000 km
 In operation since 2012
 operated by DLR
 Microwave Radiometer
 Berefit and State State

Scientific Instruments

HSRL-Lidar (WALES, 532 nm – Wirth et al. 2009) Cloud Radar (HAMP MIRA, 35 GHz – Ewald et al. 2019) Hyper-Spektral Imager (specMACS – Ewald et al. 2016) Microwave Radiometer (HAMP passive – Mech et al. 2014)

HAMP MIRA – cloud radar characteristics

HALO Microwave Package

HAMP MIRA					
Frequency	35.2 GHz				
Pulse power	30 kW				
Repetition rate	7.5 kHz				
Range resolution	30 m				
Antenna diameter	1 m				
Beam width	0.6°				
Footprint @ 10km	100 m				
Min. detect. signal @ 10 km, 1 s integration	-42 dBZ				
Effective sensitivity @ 10 km, 1 s, 200 m/s, 3° pitch	-34 dBZ				

Atmos. Meas. Tech., 12, 1815–1839, 2019 https://doi.org/10.5194/amt-12-1815-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Atmospheric Measurement Techniques

EGU

AXA

· e esa

Florian Ewald¹, Silke Groß¹, Martin Hagen¹, Lutz Hirsch², Julien Delanoë³, and Matthias Bauer-Pfundstein⁴

¹Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²Max Planck Institute for Meteorology Hamburg, Germany

HAMP MIRA – absolut calibration during PERCUSION

Using the ocean backscatter as calibration target

esa

HAMP MIRA – absolut calibration during PERCUSION Summary of all flight segments suitable for radar calibration

	avg. +1.0 dB +0.0 dB Δu = +0.03 m/				03 m/s	
☆	RF26	241112	+0.62	-0.33	6.7	-
★	RF22	240928	+0.67	-0.28	3.7	5.2
☆	RF21	240926	+1.47	+0.52	5.3	6.5
☆	RF20	240924	+0.57	-0.38	5.7	5.4
☆	RF19	240923	+0.55	-0.40	5.1	3.6
☆	RF17	240919	+1.00	+0.05	5.5	4.4
☆	RF10	240831	+1.46	+0.51	3.9	2.8
☆	RF06	240822	+1.05	+0.10	4.2	5.3
★	RF04	240818	+1.23	+0.28	4.1	-
		date	Δσ _o (old) [dB]	Δσ _o (new) [dB]	u _{Fit} [m/s]	u _{Drop} [m/s]

→ Initial radar reflectivity bias of +1.0 dB (RMSE: 0.35 dB), no drift during campaign

 \rightarrow Fitted wind speed (U10) bias of -0.03 m/s (RMSE: 1.27 m/s) vs. last dropsonde height (ca. 10 – 25 m)

CPR Validation

Comparisons with L1 and L2 products

HALO-20240818a

Transect through an active ITCZ over the Eastern Atlantic

Suomi NPP / VIIRS (Bands M3-I3-M11) 15:20 UTC

HALO-20240818a – HALO measurement Observed radar reflectivity (MIRA) and underpass precision

HALO-20240818a – Simulation of L1 radar reflectivity Observed and simulated radar reflectivity (MIRA)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

11

· eesa

HALO-20240818a – Comparison of L1 radar reflectivity

Simulated (MIRA) and observed (CPR) radar reflectivity

esa

e

HALO-20240818a – Simulation of L1 doppler velocities Observed and simulated radar reflectivity (MIRA)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

·eesa

HALO-20240818a – Comparison of L1 doppler velocities Simulated (MIRA) and observed doppler velocities (CPR)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

AXA

· eesa

HALO-20240818a – Comparison of L2 doppler velocities Observed (MIRA) and observed doppler velocities (CPR)

·eesa

Old radar calibration (BA baseline) and doppler velocities for Z > -40 dBZ

New radar calibration (CA baseline) and doppler velocities for Z > -10 dBZ

17

New radar calibration (CA baseline) and doppler velocities for Z > -10 dBZ

18

HALO-20240903a

Transect through outflow over the Eastern Atlantic

NOAA20 / VIIRS (Bands M3-I3-M11) 15:40 UTC

HALO-20240903a – HALO measurement Observed radar reflectivity (MIRA) and underpass precision

HALO-20240903a – Simulation of L1 radar reflectivity Observed and simulated radar reflectivity (MIRA)

·eesa

HALO-20240903a – Comparison of L1 radar reflectivity Simulated (MIRA) and observed (CPR) radar reflectivity

esa

HALO-20240903a – Simulation of L1 doppler velocities Observed and simulated radar reflectivity (MIRA)

·eesa

HALO-20240903a – Comparison of L1 doppler velocities Simulated (MIRA) and observed doppler velocities (CPR)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

· eesa

HALO-20240903a – Comparison of L2 doppler velocities Observed (MIRA) and observed doppler velocities (CPR)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

25

·eesa

HALO-20240903a – Comparison of L2 doppler velocities Observed (MIRA) and observed doppler velocities (CPR)

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop | 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy

Old radar calibration (BA baseline) and doppler velocities for Z > -40 dBZ

New radar calibration (CA baseline) and doppler velocities for Z > -10 dBZ

New radar calibration (CA baseline) and doppler velocities for Z > -10 dBZ

Summary – CPR L1 and L2 comparisons from PERCUSION ... what we found so far

- 1) Impressive sensitivity of CPR almost on par with airborne cloud radar
 - → "Much more thin cirrus and low-level clouds visible compared to CloudSat, nominal CPR sensitivity of -36 dBZ seems plausible"

2) Radar reflectivity bias -2 dB (C-NOM-1B-CA), -4 dB (C-NOM-1B-BA)

- → "Very stable CPR bias troughout campaign periode, absolute calibration constant of HAMP MIRA very similar to previous campaign"
- → L1B (Cal. Reflectivity / LOS) available since 15 Feb 2025 on EVDC
- 3) Doppler velocitiy bias +0.7 m/s (C-NOM-1B-CA), noisy at first Doppler velocitiy bias +0.4 m/s (C-CD-2A-AB), pos. bias at cloud top
 - → "Results are only valid for SPU-A, improved SNR for SEP/NOV, velocity bias slightly larger compared to findings by Puidgomènech et al."
 - → <u>L2A (Vertical velocity) available until 28 Feb 2025 on EVDC</u>

HALO-20241112b

Transect through snow storm over Northern Norway

New radar calibration (CA baseline) and doppler velocities for Z > -10 dBZ

32

HALO-20241114b

Two underpasses in one flight

Aqua / MODIS (Band 31, BT) Composite

- R

New radar calibration (CA baseline) and doppler velocities for Z > -10 dBZ

34