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Overview Methodology

+ Issue: Data-driven weather forecasting surrogate models For our data assimilation task, we implement 3DVar 1‘: : surrogate 3DVar analysis at time t
give accurate short-term predictions, but inaccurate long- . X F . h C
term forecasts LL'; - (I = KH)-FS(-TL] ) + Kyt, t> 1 FCON : weather surrogate, FourCastNet
« Our work: Online weather prediction using learned ) i (' : background covariance
surrogates supplemented with low-resolution .7'- s — So J‘-F(‘N S : 2D smoothing convolution
observations. 3 T T .
Fi 2. — .
+ Case study: Integrate FourCastNet [1] within a 3DVar [2] Ganssian K=CH T(H CH_ + R) ) [? : measurement error covariance
data assimilation framework using noisy, low-resolution convolution C= qB B, and B is a 2D convolution

H : linear observation operator
Ut : low-resolution observations, time t

kernel.

ERAS [3] data as a proxy for observational data.
« Results: Filtering estimates are accurate over a long time
horizon & provide effective initial conditions for Stability Theory of 3DVar Errors [4,5].

forecasting tasks, including extreme event prediction. Suppose we collect sparse, noisy, and unbiased observations over time of the true dynamical system JF .
Ground Truth 0.25° ERAS 45"ERAS 4= HEEB----cccccccccccccccccccccccccccccemc s ce— e ————————
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with a Gaussian kernel like in Figure 2.
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Results
3DVar Assimilation with 4.5° Observations and FourCastNet Extreme Event Forecasting: Typhoon Mawar 2023
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Figure 6. Forecasts beginning on May 23, 2023 00:00 UTC of the eye of Typhoon Mawar for three initialization

types. Ensemble members were created at initialization by adding inc ized N(0, 0.3) noise. In

each plot, we show the ground truth eye of Typhoon Mawar from May 23 to May 30, 2023 characterized by the

minimum mean sea level pressure.
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Figure 3. Ground truth ERAS data, interpolated 4.5 observations, and our 3DVar analysis based on 4.5° for total column Ground Truth ERAS “Gold Standard” 4.5 Obs. Forecast (4.5 Obs.) Forecast

water vapor (TCWV), U-component wind speed at 10m above the surface (U 10m), and relative humidity at 500 hPa (RH ‘ ' ¥ q
500hPa) on December 31, 2023 18:00 UTC. Our 3DVar analysis is constructed from initializing on January 1, 2023 at 00:00
UTC and assimilating 4.5 observations every 6 hours. -
vis :
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Observations, and Our 3DVar Analysis (4.5° Obs.)
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