MMOcean: Multi-Pretext Self-Supervised Learning for Ocean and Coastal Earth Observation

Stefan Oehmcke, Ayush Prasad Institute for Visual & Analytic Computing, University of Rostock, Germany Email: stefan.oehmcke@uni-rostock.de

Need for Coastal and Ocean Foundational Models

- EO enables large-scale monitoring of critical ocean and coastal environments
- Marine EO lacks labeled data compared to terrestrial applications
- Self-supervised models tailored to marine data can address this gap
- Existing methods (e.g., MMEarth) rely on pretext tasks ill-suited to marine contexts

MMOcean Dataset: At Least 1.1M Samples

Sentinel-2 (all bands) Tubut:

Sampling: **WWF Marine Ecoregions**

Pretext Tasks: Pixel- and image-level

Resolution: 10-60m

Marine self-supervised learning Focus:

WWF Marine Ecoregions

MMOcean Model: Multi-Pretext Masked Autoencoder

Marine-Specific Pretext Tasks

Surface Reconstruction:

- SST, salinity, chlorophyll-a (pixel-level)
 ERA5 variables, geolocation, time (image-level)

Surface-to-Subsurface:

temperature, salinity, and from surface imagery Predict subsurface profiles current imagery

Temporal Forecasting:

 Forecast future SST, chlorophyll-a distribution, surface currents

Planned Downstream Applications

Forecasting:

 Marine heatwave prediction (e.g., SST time series forecasting)

Semantic Segmentation:

- Bathymetry mapping (e.g., MagicBathyNet)
 Coastal land-use/change classification

Regression / Classification:

Water quality assessment (e.g., chlorophyll-a concentration, turbidity classes)

Open Questions

Task Selection:

Which pretext tasks best capture marine-specific phenomena?

Benchmarking:

How to design a marine and coastal SSL benchmark (analogous to SSL4EO-S12)?

Robustness:

How to ensure stable representations across seasons and climate-driven shifts?

References

MMEarth: Exploring multi-modal pretext tasks for geospatial representation learning. Nedungadi, V., Kariryaa, A., Oehmcke, S., Belongie, S., Igel, C., & Lang, N. (2024, September). In European Conference on Computer Vision (ECCV) (pp. 164-182).

Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M. A. X., ... & Robertson, J. (2007). BioScience, 57(7), 573-583.

