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v MOMO-Chem (Viulti-mOdel Multi-cOnstituent ical) Data Assimilation System
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o Tropospheric Chemical Reanalysis

» 17 years (2005-present), two-hourly, global, surface to lower stratosphere chemical
concentrations of 35 species, including 03, NOX, HNOg, PAN, OH, SO_, VOCs, Aerosols
TROPOM * Anthropogenic, biogenic, biomass burning, and lightning emissions (NOx, CO, SOZ)
L « Various science applications, focusing on attributions, including validation of NASA satellite products
* Able to support OSSE activities in support of mission formulation
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Global anthropogenic emission reductions in 2020: 7% (CO2) 8% (NOXx)
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CrlS satellite
(free troposphere)

TaN) (1) Global NOx emission reductions (3) Validation
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Top-down NOx emission estimates
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(2) Tropospheric ozone response

Relative temporal changes from the base date
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Using the initial conditions from BAU emission scenario

Apply to 2020 emission values on the base date

S Ozone responses to
-> BAU emissions

COVID emission anomaly
- From February 1st through July 30th, 2020

(TgN)

* | COVID emission anomaly

G- o _ Global TOB anomaly
(d) == ——— ' 2020 emissions Monthly OPE = Regional emission changes

Base date Time - From the beginning to end of each month
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Estimated NOx emissions
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Global ozone response
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Feb 01 2020
Ozone Anomaly

Values between -1.0 and 1.0 ppb culled for clarity

Reduced global TOB decreased by 6 TgO3 (2%). This drop is 15 times more rapid than what has been viewed as
achievable through even aggressive emissions reductions considered by IPCC. Important implications for ozone RF.
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Africa Australia

Feb 01 2020
Ozone Anomaly
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where and when the lockdowns occurred is very important in determining the impact on atmospheric composition



Feb 01 2020
Ozone Anomaly, United States
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Global ozone response due to VOC emission reductions

(2) Surface ozone anomaly [ppb]
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Additional 22-26 % reduction in global TOB
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Tropospheric OH and CH4 anomaly
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The 4% reduction in the tropospheric global mean
OH would increase CHas lifetime by 4 months.

—> the broad impacts on tropospheric chemistry
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Summary

* Anthropogenic NOx emissions dropped by at least 15% globally and 18-25% regionally
In April and May 2020, which led to < 5 ppb decreases in FT ozone and a 2% reduction
In TOB, consistent with iIndependent satellite observations.

* Our results show that COVID-19 mitigation led to a clear and global atmospheric
signature that altered atmospheric oxidative capacity and climate radiative forcing and
can be used to inform policies that co-benefit air quality and climate.

 New LEO and GEO measurements and multi-spectral retrievals provide much-improved
spatial and temporal resolution and coverage. They should lead to greater usefulness of
satellite measurements for climate and air quality applications in conjunction with the
chemical reanalysis, for instance, to better isolate sources and attribute sectors and their
Influences on ozone at daily scales (Miyazaki et al., 2022 & In review).




