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Shelf seas and marine ecosystems
• Shallow ocean less than 200m depth

• 7% of global ocean are ‘shelf sea’
• 20% global biological productivity
• 20% ocean uptake of atmospheric 

carbon
• 80% global fish catches

• Need for more detail of key indicators and 
processes:
• Refined forecasting capability
• Improved computational efficiency
• Better diagnostics and analyses
• Usable information, relating to 

management - policy and science
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• Modelling this is a complex task

• Large system of interactions coupled to 
a physical model

• Huge uncertainties in model 
parameters & feedback mechanisms

• Observation Space <<<< Model Space
   (only observe total chlorophyll, derived 
    from ocean colour at surface)

Domain considerations
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Research questions

Part 1:
Can we identify potential simplifications for                 

biogeochemical ocean models?

Part 2:
Can we leverage machine learning to improve                                     

data assimilation of marine ecosystems?
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• Surface data from a 2016-18 free run 
NEMO-FABM-ERSEM

• We focus on the surface since satellite 
imagery can only observe the ocean's 
surface

• Pre-process the time series with a 
highpass filter

• Verified on a subset of variables from 
2005-07 run

• We are interested in the lengthscales and 
interactions of modelled quantities

Model and domain
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Network construction
• Network links are 

determined by correlation 
between any pair of grid 
points

• This is a flexible structure 
that can be used for 
numerous purposes and 
analyses

• For example, we can 
approximate length-scales…

Different model fields

Correlation networks for each field
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Mean length-scale correlations

• Mean length-scale of each 
variable

• At different thresholds (0.5, 0.6, 
0.7)

• We see some cohesion in the 
length-scales within groups 

• Length-scales are not directly 
transferable between all 
variables
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• Dynamically thresholded 
networks

• Mean length-scale at 
each point from these 
networks

• Distinct “cuts” are present 
in this length-scale map

Spatial variation in length-scales
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Provides a simple formulation for approximating length-scales

ℓ(x, v)

ℓ(v)f(x)
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k = 3 k = 13

Spectral graph clustering
Aggregated boundary from the 
50 ERSEM state variables. 

“Brighter” boundaries are more 
consistent

We see a convergence of 
boundaries on the shelf (not 
guaranteed to happen)

Shelf-sea to open ocean 
exchange 
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• Intervariable correlations, 
with time lag considered

• Distinct clusters of variables 
form

• These relationships generally 
match well to the relational 
ERSEM schematic diagram

Inter-variable network
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Research Questions

Part 1:
Can we identify potential simplifications for                 

biogeochemical ocean models?

Part 2:
Can we leverage machine learning to improve                                     

data assimilation of marine ecosystems?
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Model and Domain
• We work on a 1D vertical model
• Good first approx. of error 

relationships – should have some 
translational property

• This also affords us several 
luxuries

• (i.e. much cheaper computational 
cost -> faster experimentation)

• Of course, we cannot expect 
every aspect of the 1D model to 
scale to 3D

• However, many vertical 
processes are likely translational

k = 13Example 1D Temperature Profile
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Problem statement
• Recall – we only observe total chlorophyll on surface of the ocean

  Observational space <<< Model space

• We need to to describe accurately the (potentially non-linear) relationship between the few 
observations and the rest of the unseen domain

• Currently, a univariate EnKF + a balancing scheme is adopted operationally (e.g. at MetOfficeUK)

• A very large EnKF will only partially solve the problem (still based on linear gaussian assumption)

• In principle a particle filter would solve the problem (prevented by the curse of dimensionality)

• We aim at using machine learning to unveil the observed to unobserved relationship, and use it 
effectively to update the unobserved space
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• We generated a long free run, with each ensemble member having 
some perturbed parameters (which are then fixed for the whole run)

Total Chlorophyll Phosphates (a nutrients)

How can we create a training dataset?



ESA-ECMWF WORKSHOP 2024 - Machine Learning for Earth System Observation and Prediction

• The NN learns the 
relationship well

  (for the most part)
• We prevent ML from 

updating variables 
with poor R² score

Phosphates
R² = 0.96

Nitrates
R² = 0.99

Medium Particulate Organic Matter 
R² = 0.13

Silicates
R² = 0.99

Ammonium
R² = 0.94

Training (offline)
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O2

Relative Improvement over existing UKMO scheme

UKMO Benchmark
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An encouraging result, but…
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Closer inspection
• Instead of efficiently correcting the forecast error in the 1 week DA 

cycle, we instead correct a bias
• A direct consequence of our strategy for constructing the dataset

Phosphates Nitrates
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Our ongoing work and next steps
• Investigating the capability of ML to learn the correction done by a 

large EnKF (aka a perfect model scenario)

• From a practical aspect, we would like to see if the trained relation in 
1D can then applied in the 3D system – translational invariance

• How can we make ML unveil observed to unobserved relationship 
that are not represented by the Kalman filter?
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Conclusions
• Successfully interrogated the structure and interactions 

at the surface of the 3D model, with simplifications that 
can be applied across many areas (e.g. DA, ML, 
modelling…etc)

• Promising results for having ML emulating a fully non-
linear multivariate DA

• Thank you for listening, any questions?
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