

First comparisons between ATLID and ATR42 during MAESTRO campaign *E. FRANCOIS*¹ - *J. DELANOË*¹ - *S. BOUNISSOU*¹ - *S. BONY*² - MAESTRO Team

1 : LATMOS 2 : IPSL

Introduction

- MAESTRO campaign (*Mesoscale Organisation of Tropical Convection*, PI: Sandrine Bony LMD)
- Operations out of Sal (Cape Verde), 10 Aug 10 Sept 2024 → 86 F/H (24 flights)
- 5 legs have been processed (radar targets only available on the 31st of August)

6 flights dedicated to EarthCARE CalVal

Airborne Payload

- RASTA, looking up and down 6 antennas (Doppler W-band) •
- LNG, HRSL 355nm (backscatter 532&1064), 2 pointing directions •
- BASTAir, sideward looking W-band Doppler radar ٠
- aWALI, sideward looking 355nm raman lidar •
- Large in-situ payload •

	Instruments \ Objectives	Aerosols	Clouds/precip	Water vapour/ Temp	Wind	Turbulence	Surface
	LNG	Į,			cloud/aerosol		
	RASTA (6 antennas)				cloud/precipitation	cloud/precipitation	
	BASTA				cloud/precipitation	cloud/precipitation	
	aWALI			heterog eneities			
100	FCDP/HVPS/2DS/U HSAS/CVI/NP/FSSP						
	Aircraft's baseline information				clear sky/cloud/aerosol		
	CLIMAT						SST
	Pyrano-& pyrgeometers						

Airborne Lidar : LNG

LNG

- RALI platform → radar-lidar synergy (RASTA/BASTA)
- Upward or downward pointing
- 3 wavelengths : 1064 nm, 532 nm, 355 nm
- High Spectral Resolution at 355 nm
 - ຩ Mie attenuated backscatter
 - General Ge

Airborne Lidar : LNG

LNG

- RALI platform → radar-lidar synergy (RASTA/BASTA)
- Upward or downward pointing
- 3 wavelengths : 1064 nm, 532 nm, 355 nm
- High Spectral Resolution at 355 nm
 - ຩ Mie attenuated backscatter
 - → Rayleigh attenuated backscatter

lidars	ATLID	LNG
Vertical resolution	103 m (from the ground to 20 km)	30 m (native 1.8 m)
Horizontal resolution	282 m	400 m (400 shots integrated)
Frequency	51 Hz	100 Hz

L1 ATLID baseline → ECA_EXAC_ATL_NOM_1B Reference altitude : Mean Sea Level Frame E

Flight summary

Date	Flight #	Take-off [TO] / Landing [LA]/ Meeting point [MP] times	Legs (convention from MAESTRO)	Comments
20240811	F24	TO 14:33:45.07Z LA 18:13:42.50Z MP 15:49	H1 6466m, time [s]: 54995.0 55718.0 H2 6467m, time [s]: 56379.0 57801.0	 Almost no radar signal (instrument OK) Issue with LNG-lidar (part of track missing) In-situ data OK
20240813	F25	TO 14:20:43.95Z LA 17:37:26.19Z MP 15:40	H1 6481m, time [s]: 54246.0 55595.0 H2 6483m, time [s]: 55898.0 57218.0	 Almost no radar signal (instrument OK) LNG OK, good aerosol layer and tiny liquid clouds In-situ data OK Track slightly off due to issue in prediction
20240820	F31	TO 14:03:31.21Z LA 17:33:55.94Z MP 15:50	H1 6477m, time [s]: 56580.0 57480.0	 No radar signal (instrument OK) LNG OK, good aerosol layer and tiny liquid clouds In-situ data OK
20240822	F32	TO 13:55:27.23Z LA 17:32:49.48Z MP 15:41	H1 6785m, time [s]: 56040.0 57059.0	 No radar signal (instrument OK) LNG OK, good aerosol layer and tiny liquid clouds In-situ data OK
20240829	F38 X	TO 13:52:13.14Z LA 17:40:57.88Z MP 15:49	H1 6478m, time [s]: 56490.0 56894.0 H2 6800m, time [s]: 57140.0 57359.0	 No radar signal (instrument OK) No LNG due to computer issue In-situ data OK
20240831	F40	TO 13:57:37.89Z LA 17:30:33.43Z MP 15:38	H1 6478m, time [s]: 56490.0 56894.0 H2 6800m, time [s]: 57140.0 57359.0	 Radar and lidar signals In-situ data OK

Pattern

All flights

+ 355 target classification 10^{-4} Meeting Point EC/ATR42 EC overpas 10-5 1 backscatter -m] mu MAESTRO 20240813 F25 10-6 8 ---- Meeting Point EC/ATR42 Altitude [km] 17:00 17:15 17:30 Target 532 nm subsurface - Meeting Point EC/ATR42 10-6 8 surface • • • EC overpass aerosol possible aerosol 17.79.48.44 The surger supercooled layer 10-7 16.8 16.6 17.0 17.2 17.4 ice cloud 16.4 liquid warm Target 355 nm pure molecular - subsurface ----- Meeting Point EC/ATR42 attenuated molecular surface close range aerosol extinguished possible aerosol - negative range Altitude [km] upercooled layer - noise ice cloud liquid warn 17:00 17:15 17:30 pure molecular attenuated molecula 20 close range Meeting Point EC/ATR42
 Meeting Point EC/ATR42 extinguished negative range -- noise tivity RASTA [dBZ] 16.8 17.2 17.4 16.4 16.6 17.0 Latitude [°]

355 nm attenuated backscatter

MAESTRO 20240813 F25

355 nm attenuated backscatter + 355 target classification

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

Time

F25 2024/08/13c

JAXA Cesa

Extinction preliminary comparison

LNG

LNG during the MAESTRO campaign 20240813, CALVAL EarthCARE L2 ATLID baseline → ECA_EXAC_ATL_EBD_2A

F31 2024/08/20

355 nm attenuated backscatter + 355 target classification

Pure molecular

F31 2024/08/20

F31 2024/08/20

Conclusion

JAXA Cesa

- 5 flights for the CalVal
- Globally good agreement between ATLID and LNG measurements during the common legs
- ATLID signals are sometimes attenuated by clouds above the aircraft when compared with LNG

What's next?

- ATLID L2 products in investigation (extinction, lidar ratio...)
- Doppler and depolarization retrieval from LNG for comparisons with ATLID
- MORECALVAL campaign : Toulouse, 17 March 2025 4 April 2025

Orbit forecast for MORECALVAL

Thank you for your attention !