

J. Lampert, P. Fanta-Jende, J. Salzinger, L. Beltrame,P. Thiele, D. Duarte, B. Schumacher, C. Briese

Massive amount of EO data available.

Pretrained Foundation Models offer a great opportunity for scientists.

Fine-tuning for domain-specific applications challenging.

Raw Satellite Data

Data Exploitation

Direct prediction is **UNRELIABLE**

shadows

removing clouds and high-quality ground truth

Prediction from **HIGH QUALITY**

predicting from enhanced images

Actionable Insights

- windthrow
- anomaly

Sentinel-Assisted Forestry Insight and Research - Al for Climate-Responsive Forest Monitoring in Mountainous Regions

Call: Digital Twin Austria

Project duration: 3 years

Project start: 1.11.2024

Coordinator:

Stakeholders

Key Challenges for Remote Sensing-Based Forest Monitoring:

- Increased monitoring frequency is necessary (due to natural hazards and climate change-related effects).
- Shadowing effects caused by mountainous terrain and cloud shadows in optical Earth observation data hinder monitoring:
 - Data is not directly usable
 - Delays detection and timely response
 - Leads to ecological and economic consequences (e.g., late detection of damage events)

Sentinel-2 and Geoland ortho mountain shadows, Source: gtif.esa.int

Topographic correction:

- Benefit: Accounts for differences in illumination due to terrain.
- Approach: Radiometric correction of data using a digital elevation model.

G. Yin et al., "PLC-C: An Integrated Method for Sentinel-2 Topographic and Angular Normalization," in *IEEE Geoscience and Remote Sensing Letters*, vol. 18, no. 8, pp. 1446-1450, Aug. 2021, doi: 10.1109/LGRS.2020.3001905

Deshadowing and declouding of Sentinel-2 images:

- Benefit: Additional images for training of downstream tasks.
- Approach: Detection and correction of clouds and cloud shadows using neural networks and radar data.

Meraner, Andrea, et al. "Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion." *ISPRS Journal of Photogrammetry and Remote Sensing* 166 (2020): 333-346.

fine-tuning (objective 3)

SAFIR's pipeline

- re-uses **public data** for pre-training with **image quality losses**
- · leverages highly reliable UAV data for task-specific fine-tuning

Task 1: Windthrow Detection

- Benefit: Rapid detection of windthrows
- Products: Binary raster layer
- API/WebUI: Data layer integrated as a mock-up for demonstration purposes in GTIF

Task 2: Anomaly Detection

- Benefit: High-frequency forest anomaly detection
- Products: Raster layer time series
- API/WebUI: Data layer integrated as a mock-up for demonstration purposes in GTIF

Deigele, W.; Brandmeier, M.; Straub, C. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. *Remote Sens.* **2020**, *12*, 2121.

Ortho labels
Prediction

ESA's Green Transition Information Factory (https://gtif.esa.int/)

European data and analytics infrastructure concept:

- First demonstrator in Austria.
- Combines Earth Observation, cloud-computing and cuttingedge analytics.
- SAFIR will provide results for GTIF.

Tackling downstream tasks effectively requires domain knowledge.

More diverse, multi-modal datasets for finetuning foundation models are needed.

Development of new foundation models should be guided by needs of the EO community.

Thank you for your attention!

Dr. Jasmin Lampert
Senior Scientist
Data Science and Artificial Intelligence
Center for Digital Safety and Security

jasmin.lampert@ait.ac.at https://www.linkedin.com/in/jasmin-lampert/

Dr. Phillipp Fanta-Jende
Senior Scientist
Assistive and Autonomous Systems
Center for Vision, Automation and Control

phillipp.fanta-jende@ait.ac.at +43 664 88390736

The developments described are carried out within the SAFIR project funded by the Austrian Research Promotion Agency (FFG) in the frame of the Research, Technology & Innovation (RTI) initiative "Digitaler Zwilling Österreich".