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Introduction: Motivation

Subseasonal to seasonal (S2S) forecasting bridges the gap between medium‐range
weather forecast (up to 10 days) and seasonal predictions (3–6 months). S2S fore‐
casts are applied across various sectors including agriculture, water resource man‐
agement and renewable energy, among others. Despite ongoing efforts and the
potential for predictability, S2S forecasts exhibit limited skill, especially for surface
variables. The skill of forecasting lead time for a weather event depends largely
on its spatial scale, and improved resolutions are essential for achieving skillful S2S
forecasts. In particular, the need for high‐resolution wind resource information be‐
comes crucial as the supply and development of wind power continue to expand.
Here, we present Diffscale, a pots‐processing deep learning approach based on di‐
fussion models to downscale S2S forecast of wind surface. DiffScale is designed to
super‐resolve coarse‐resolution S2S forecasts generated by the European Center
for Medium‐Range Weather Forecast (ECMWF).

Background & Implementation

In the score‐based framework, we understand the diffusion process as an SDE

dx = f (t)xdt + g(t)dwt, (1)

with the reverse process

dx =
[
f (t)x − g(t)2∇x log pt(x|c1, . . . , cK)

]
dt + g(t) dwt, (2)

where w is a standard wiener process, c1, . . . , cK are conditioning inputs that can
guide the reverse process and ∇x log pt(x|c1, . . . , cK) can be approximated by a
parameterized score function sθ(·|c1, . . . , cK).
We choose a U‐Net with attention in the bottleneck as the backbone for sθ.

There are many solvers for eq. (2) (see [2]), in this work we use the simple Euler‐
Maruyama method. Furthermore we settle for the simple VE schedule with zero‐
drift

σ(t) = σmin

(
σmax
σmin

)t

, (3)

where we set σmin = 0.01, σmax = 50 and t ∼ U [0, 1] during training and inference
(equidistant steps).

Data: ECMWF reforecast and reanalysis

The forecast and retrospective forecast (reforecast) data are derived from the Eu‐
ropean Centre for Medium‐Range Weather Forecasts (ECMWF), accessible via the
Subseasonal‐to‐Seasonal (S2S) Prediction Project Database [3]. Atmospheric vari‐
ables, namely 2m surface temperature, mean sea level pressure, zonal wind (u),
meridional wind (v) at 300, 925 hPa, geopotential at 500 hPa and 10m wind speed
are used as input data. Additionally, high‐resolution orography data is included in
the inputs. The high‐resolution 10m wind speed used as our target is retrieved
from the ERA5 reanalysis [1].

Forecast are the operational ensemble predictions consisting of 51 members
(50 perturbed 1 control). The real time forecasts correspond to the year 2021,
including model cycles Cy47r1, Cy47r2, and Cy47r3, switching in May and
thenOctober of 2021, respectively. Here, the forecast are used only for testing
purposes.
Reforecast from ECMWF are computed twice a week (Mondays and Thurs‐
days) and consist of 11 ensemble members (10 perturber + 1 control), covering
a forecast lead time up to 46 days and with a spatial resolution of 1.5◦. The
reforecast data spans from 2001 to 2020. In this study, only the perturbed
members of both forecasts and reforecasts are utilized.
ERA5 reanalysis data serves as the reference. The data has been retrieved at
its original spatial resolution (0.25◦).

Method

As a proof of concept, we use a lead time of one day in our experiments, which
are conducted over Germany, covering the area from 0 ◦ to 27 ◦ logitude and 45 ◦

to 53 ◦ latitude. We condition the diffusion model with the ensemble means of a
numerical model, rather than a lower resolution version of the ground truth target.
The ensemble inputs do not always match the ground truth (see fig. 3), hence we
add additional prior knowledge as conditioning input.

To achieve super‐resolution for different scaling factors (without re‐applying the
model), we additionaly embed the scaling factor s as a conditioning input. This
helps the model achieve continuous super‐resolution w.r.t. s.
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Figure 1. Sampling from our Diffusion Model with conditioning inputs. Transitions with an arrow
are performed via the Euler‐Maruyama method, given our score function sθ.

Results

We achieve a significant increase in the prediction quality (see table 1), utilizing our
diffusion model that handles both: continuous super‐resolution and bias correction
of the ensemble mean. For our predictions we sampled from the same diffusion
model 10 times with the same inputs.

Figure 2 shows how the model has learned to upsample by arbitrary scaling fac‐
tors s. The diffusion model allows for more variation of sample outputs, yielding
corrected predictions. Figures 4 to 7 show how the model handles bias correction
with more variation in its predictions, to account for uncertainty.

(a) ×1 (b) ×2 (c) ×3 (d) ×4

Figure 2. Continuous Super‐Resolution. Displayed are the means over 10 predictions obtained
from the same diffusion model, with respective conditioning input s.

Scaling Factor (s) CRPS Loss ↓
Ensemble Input Ensemble Input (Interp.) DiffScale

×4 0.691 ± 0.673 0.689 ± 0.656 0.536 ± 0.328
×3 0.686 ± 0.668 0.685 ± 0.652 0.536 ± 0.348
×2 0.682 ± 0.665 0.682 ± 0.647 0.534 ± 0.331
×1 0.682 ± 0.664 0.678 ± 0.646 0.529 ± 0.328

Table 1. CRPS with normalized data. First column: raw Ensemble inputs of the numerical model,
second column interpolated (upsampled via bilinear interpolation) Ensemble inputs of the
numerical model, third column: our diffusion model.
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Figure 3. Bias of ensemble input.

(a) Mean of generated
predictions.

(b) Standard deviation of
generated predictions.

(c) Ground truth.

(d) Generated predictions.
Figure 4. Bias correction of generated predictions (×1).
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Figure 5. Bias correction of generated predictions (×2).
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Figure 6. Bias correction of generated predictions (×3).
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Figure 7. Bias correction of generated predictions (×4).
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