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A Swarm of
jerks

Using the spatial gradient tensor
for core-surface flow modelling
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What are geomagnetic jerks?

* The internal magnetic field from the outer core is highly dynamic.
« Geomagnetic jerks: abrupt™ changes in secular variation (SV), often V or A
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Geomagnetic virtual observatory (GVO) gradients

* Bin satellite data onto a semi-regular grid on a sphere,

* Each grid point is the centre of a cylinder
(radius = 700 km)

* This is the GVO

By taking along- and across” track differences of the —p——

data, we can estimate the spatial gradients tensor
(Hammer et al. 2022)
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* We can obtain gradients from Swarm and CHAMP Hammer et al. (2021), EPS

"Across track differences only available with Swarm



GVO gradients from Swarm

Swarm
d[VB],/dt
180° 120°W 60°W

« \We obtain SV from first 00°E : 120°E
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Thanks to Jonas Bregnhgj Lauridsen and
Chris Finlay at DTU for these data.



Flow inversion — inverting the induction equation

* Assume that magnetic field is “frozen” into the fluid flow = Neglect diffusion
—i.e. “When the field moves, it is moved by flow in the outer core”

e This leads to reduced induction equation:

Horizontal surface flow _ Secular variation is driven by the
Br + VH . (uHBr) =0 |nteract-|on- between flow and the
Radial secular Radial magnetic magnetic field
variation field

» By decomposing the flow into poloidal (§) and toroidal (7°) components, we expand data
and flow components into spherical harmonics (SH)

* We obtain our model with a damped least squares inversion.

* Our models are damped: to minimise acceleration between epochs,
and to minimise spatial complexity.



Flow inversion —- minimum acceleration and TO-like

* We obtain our model with a damped least squares inversion.

e Our models are damped: to minimise acceleration between epochs,
and to minimise spatial complexity.

* No use of numerical or stochastic models, and without enforcing any flow-geometry (such as quasi-
geostrophy or equatorial symmetry)

* We create two types of models:

Model Damping

Minimal acceleration

Damp all flow coefficients

Torsional oscillation (TO)-like

No temporal damping on equatorially symmetric zonal
flow coefficients

Rotation axis

Torsional |
oscillations: |

We create (and compare!) flow models from vector
and spatial gradient data from CHAMP and Swarm
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Model performance — good agreement with data

Vector data Gradient data
RMS misfit =1.30 RMS misfit = 1.00
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Model resolution — gradients resolve more flow coefficients

CHvec — Epoch 2005.33

CHgrad — Epoch 2005.29

* Resolution matrix shows §o o

how well the velocity ] | ekl
coefficients are resolved
by data

™.
\

.§ Trace = [60.]

\\
“.$ Trace = [66.2]

i 1.0

. s | 5

. — components components i

race = sum of diagonals STl ST
14 14 0.5
24 6 8 10 12 14 24 6 8 10 12 14 24 6 8 10 12 14 24 6 8 10 12 14
T s i i s
components components components components

maximum SH degree 14
u g SWvec — Epoch 2018.67 SWgrad — Epoch 2018.67

27 2
:I 44 44
2 2 6 1 6 1 2
84 7 Trace = [32.4] g4 - T Trace = [42.] ‘ —0.5
104 : 104
T 1 - T :
components components
. . (SH degree) 12 4. : (SH degree) 12 : ~-1.0
Perfect resolution matrix
13
61 10 49 41
] A
s ] i 1]
components . 2 1
(SH degree) 124 03 6 ] \\\ 6 ]
1 8 ~.§ Trace = [62.6] 8 .S Trace = [82.6]
14 N X
i? 00 10 4 = 10
6 1 s | ; 5
8 components s i components ’
101 o5 (SH degree) 12 4* (SH degree) 12
s | 4
components by 5
(SH degree) 121 E -
1 14 4 : 14
-1.0 H
144
R e e e e T T R e e e e S T T T
246 8 10 12 14 246 8 10 12 14 24 6 8 10 12 14 24 6 8 10 12 14 24 6 8 10 12 14 24 6 8 10 12 14
T s 7 S 7 S
components components components components components components

(SH degree) (SH degree) (SH degree) (SH degree) (SH degree) (SH degree)



Model resolution - gradients resolve more flow coefficients

e Gradient based models
resolve ~133% of that of
the vector derived
models for Swarm
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Model resolution - gradients resolve more flow coefficients

e Slight improvement when
using gradient data for

flow-modelling in CHAMP
era
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Averaging functions

* Averaging functions (AF) are great way to visualise spatial resolution
* They indicate how well a model estimate is localized at a given point

* We calculate AFs across the core-mantle
boundary (and normalise values), in order
to evaluate model resolution in space

Example of perfect averaging function at a
point with max. spherical harmonic degree 14.
From Whaler, Olsen, and Finlay (2016), GJI.



Averaging functions reveal regions of improved resolution

 Poloidal flow, S,
appears well resolved
most locations

* Pronounced Gradient data S

‘ambiguous’ band along .-
magnetic equator?

Epoch 2018.0

* Weak resolution in
South Atlantic, North
Pacific, and North Polar
region



Averaging functions reveal regions of improved resolution

e Strong increase in AF (nearly) everywhere when using gradients
* Increased spatial resolution confining ambiguous patches?

Vector data §
Epoch 2018.0
I 2

Difference §
Epoch 2018.0

Gradient data §

Epoch 2018.0




Averaging functions reveal regions of improved resolution

e Strong increase in AF (nearly) everywhere when using gradients

 Much weaker Afs for toroidal flow than poloidal

. Vector data T
_i>

Difference T°
Epoch 2018.67

Gradient data T
Epoch 2018.67




Result: Flow acceleration pulse in between jerks?

--

2016 2019 2022 2016 2019

Year Year

Earth's
rotation

Lami, azimuthally propagating

QG Magneto-Coriolis waves

T west

change of
wave force balance

(Coriolis takes over inertia)
o -

radially propagating
QG Alfvén (magneto-inertial) waves

Finlay et al. (2023)

-1.5 —=1.0 =05 0.0 0.5
ag(km yr=2)




Conclusions
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* We inverted vector and spatial gradient data
from CHAMP and Swarm for core-surface

flow Year = 2018.67
* We found that spatial gradient data from B S

Swarm resolved the flow significantly
better than vector data

 ...whereas spatial gradient and
vector data from CHAMP
performed comparatively.

* Our flow models suggests that the
2017 and 2020 jerks were caused by
a wave-like pulse in ag,

* This suggests a new jerk in the Pacific around
2023. Happy

birthday to
Swarm!




Predicting variations in length-of-day (ALOD)

* The minimum
acceleration models
do a poor job at
predicting ALOD
variations

* TO-like models
predict better

ALOD (ms)

* Equal performance
for gradients and
vectors

0.0 _ ----- Minimum acceleration vec
’ 1 TO-like vec

0.7 === Minimum acceleration grad
" { === TO-like grad

_: —— Observed ALOD

1998 2000 2002 2004 2006 2008

2014

2016 2018 2020 2022 2024




