

MSI L1 cross-satellite validation using data from MSG SEVIRI S. Bley¹, A. Hünerbein¹, N. Docter¹, N. Madenach¹, G. Walter¹, R. Preusker² 1 TROPOS, Leipzig, 2 FU-Berlin

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop 14 – 17 January 2025 | VIRTUAL EVENT

TROPOS

Introduction – Case study 12 Jan 2025

M-RGR (false RGB) 9.5 * S 11.7 * S 43.2 * E 42.8 * E

13.9 ° S 42.4 ° E

16.1°S 41.9°E

18.3°S 41.5°E

9.5°S 43.2°E

5.0°S 44.1°E

7.2°S 43.6°E

Image created by Leonard König, TROPOS

Introduction – Case study 12 Jan 2025

- 250

200

- 150

- 100

50

TROPOS

Introduction – Case study 12 Jan 2025

MSI L1 RGB

Putting the 150 km MSI swath into a better context with SEVIRI in the background...

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

MSG SEVIRI RGB – full disc

MSI L1 RGB

- SEVIRI measures onboard geostationary satellite Meteosat Second Generation (15 min repeat cycle)
- Multiple MSI frames crossing the SEVIRI full disc every day → perfect spatiotemporal collocation
- SEVIRI's spectral channels well characterized and calibrated (operating since 2002 and still ongoing)
- Very similar spectral channels between both instruments

Very similar filter functions between MSI and SEVIRI spectral channels

Challenges

- Much stronger viewing geometry dependency for SEVIRI compared to MSI
- → Limit validation to similar viewing geometry
- → SEVIRI sub-satellite point (Tropics-ITCZ) covers warm ocean, very bright and cold clouds, vegetation and desert → suitable for L1 validation

MSI viewing angle compared to SEVIRI for frame D over Europe

MSG SEVIRI viewing geometry

Viewing geometry of SEVIRI on MSG-2 satellite located at 0 deg W, Neukermans, 2012.

·eesa

AXA Cesa

Challenges

- Much stronger viewing geometry dependency for SEVIRI compared to MSI
- → Limit validation to similar viewing geometry
- → SEVIRI sub-satellite point (Tropics-ITCZ) covers warm ocean, very bright and cold clouds, vegetation and desert → suitable for L1 validation
- Spatial resolution: 3x3 km for SEVIRI versus
 0.5x0.5 km for MSI
- → Minimum of 36 MSI pixels within one SEVIRI pixel → sub-pixel inhomogeneity

MSI viewing angle compared to SEVIRI for frame D over Europe

MS

viewing angle [degree

MSG SEVIRI viewing geometry

Viewing geometry of SEVIRI on MSG-2 satellite located at 0 deg W, Neukermans, 2012.

Introduction - Cross-satellite calibration

- Cross-satellite or inter-satellite validation and calibration has proven to work for many missions like recently for the Flexible Combined Imager (FCI) onboard Meteosat Third Generation (see presentation James Champion, EUMETSAT conference 2024)
- In contrast to MODIS, SEVIRI VIS (0.6 μm) is 8% too low, while channel 1.6 μm is 3.5% too high
- Comparison between SEVIRI and AVHRR demonstrates 6% higher VIS (0.6 μm) and 26% higher SWIR-1 (1.6 μm) for SEVIRI reflectances (Roebelling and Stammes 2006, JGR)
- Radiative transfer calculations of the effect of trace gas absorption on top-of-atmosphere reflectances can be used to correct for differences in spectral response functions (Meirink et al. 2013, AMT)

→ MSI L1 calibration verification during the commissioning phase has shown that vicarious calibration is needed to improve L1 data (particularly for VNS)

Intercomparison of MSI TIR channels

Intercomparison of MSI TIR channels

10.8-12.0 µm brightness temperature difference (K)

- MSI TIR-3 calibration significantly improved in version EXAD
- BT differences have direct impact on cloud and aerosol detection and L2 products

erature difference (K

10.8-12.0 μ m brightness ter

Intercomparison of MSI VNS channels

ECA_EXAD_MSI_RGR_1C_20241123T122712Z_20241123T140049Z_02778E

-1.2

-1.0

-0.8

Refl 0.87

-0.4

-0.2

-0.0

TROPOS

frame 2778E

SEVIRI_20241123T123011Z_20241123T124243Z MSI **SEVIRI** (0.5 km) (3 km)

-1.2 -1.0 -0.8 -0.4 -0.2 -0.0

ECA_EXAD_MSI_RGR_1C_20241123T122712Z_20241123T140049Z_02778E

Intercomparison of MSI VNS channels

- Averaging of collocated MSI L1 pixels to match SEVIRI resolution
- Scatter plot only for consistent cloud fraction > 0.95

Intercomparison of MSI VNS channels

→ MSI VIS-NIR-SWIR1 cloud reflectance seems too high in comparison to SEVIRI
→ Ongoing work to quantify the impact of different spectral channel characteristics using the MSI tool

Intercomparison of MSI VNS channels (VIS)

- Comparison indicates that vicarious calibration using geo satellites is needed (**FCI** has been recently successfully cross-satellite calibrabrated)
- Carefully account for differences in spectral response functions → Radiative transfer simulations using the MSI tool

Conclusion

- MSI L1 cross-satellite validation shows that the three TIR channels are well calibrated
- VNS calibration (VIS-NIR-SWIR) does not work as expected due to the imperfect pre-flight calibration
- First comparison against MSG SEVIRI indicates that systematic biases can potentially be corrected using cross-satellite calibration
- Focus now on FCI onboard MTG with similar spatial resolution like MSI (0.5x0.5 km)
- Vicarious calibration using MTG's Flexible Combined Imager (FCI) still needs to carefully consider differences in spectral response functions (apply radiative transfer simulations with the MSI tool)

- Calibrations are performed in reflectance space (correction factors improve across track solar irradiance)
- \rightarrow Do not use MSI VNS radiances but reflectances instead

Thank you!

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

Intercomparison of MSI VNS channels (SWIR-1)

Clear sky vegetation (frame 02778E)

Clear sky ocean (frame 02609E)

Clear sky desert (frame 02778E)

