

An Initial Assessment of EarthCARE ATLID and MSI ESA L2a Uncertainties (NEVAR, EVID38) Kerstin Stebel, and Tove Svendby, Ann Mari Fjæraa, and Espen Sollum, NILU, Norway

& results from EVID-36, Larisa Sogacheva, FMI, Finland

2nd ESA-JAXA EarthCARE In-Orbit Validation Workshop 17 – 20 March 2025 | ESA-ESRIN | Frascati (Rome), Italy nilu

Example of EarthCARE uncertainties: ATL-EBD

AE_ATL_EBD_2A 2025-03-11 (04459E)

Mie backscatter - high resolution

Example of EarthCARE uncertainties: ATL-ICE

JAXA

· e esa

ice crystal effective radius

ATL-ALD quality status, mask, and uncertainties

Evaluation approach I/II

Validation using global AERONET data – Level 2.0, Level 1.5 and Lunar observations (all points)

only few matches per station

- Use Level 1.5, Level 2 still little coverage, lunar data
- Data download until 2025/03/01
- Spatial-temporal correlation: **50 km, 30 minutes**

1. Useful: python oads_download.py A-ALD -radius_search 50000 79.990278 -85.939167 -st 2024-09-28 -et 2024-12-14 by Leonard König (TROPOS) for EarthCARE time series at station location

2. Temporal correlation in second step

 Note_ MSI-AOT with quality status 4: no retrieval attempt due to bad or missing input data (input data not available or out of bounds) -> user perspective, remove "empty" data ?

Reading file: ECA, EXAB, MSI, AOT_2A, 2025011770547282, 2025011770826142, 03630A Number of valid AOD: 0 Reading file: ECA, EXAB, MSI, AOT_2A, 2025011770720022, 2025011770824122, 03631A Number of valid AOD: 0 Reading file: ECA, EXAB, MSI, AOT_2A, 20250126T0543362, 20250126T0824102, 03770A Number of valid AOD: 0 Reading file: ECA, EXAB, MSI, AOT_2A, 20250126T0716092, 20250128T0824542, 03771A Number of valid AOD: 0 Reading file: ECA, EXAB, MSI, AOT_2A, 20250126T0716092, 20250128T0824542, 03771A Number of valid AOD: 0 Reading file: ECA, EXAB, MSI, AOT_2A, 2025012610716092, 20250128T0824542, 03971A Number of valid AOD: 0 Reading file: ECA, EXAB, MSI, AOT_2A, 20250204T0539192, 2025013127342, 038554 Number of valid AOD: 0

Evaluation approach II/II

MSI – AOT

Univ_of_Nevada-Reno_lev20 AB_MSI_AOT_2A : 2024-09-08 22:21/19:07 - 22:33/19:19 UTC/LC (01602D)

ARM_SGP_lev20_AC_ATL_ALD_2A 2024-11-15 20:41/15:11 - 20:54/14:11 UTC/LC (02659D)

MSI-AOT (AB, AC): AOT at 670 nm – land and ocean, AOT error AOT at 865 nm – ocean, AOT error AE (355/670, 670/865), no error

ATL-ALD (AC, AD, AE): AOT at 355 nm, AOT error

AM-ACD (AB, AC): fewer datasets AOT at 355, 650, 865 nm incl. error AE (355/670, 670/865), errors are given

MSI-ATL AOT at 670 & 865 nm and uncertainties

Correlation EarthCARE AOD vs. AERONET AOD lev 1.5

AOT 670 nm

- N= 517 colocations, **R** = 0.63
- low bias at AOT above ~0.2
- EC uncertainties
 - small compared to t = AOT _{EarthCARE} AOD _{AERONET}

JAXA

· e e sa

• higher uncertainties (land ?)

AOT 865 nm

- N= 236 colocations, **R** = **0.8**
- EarthCARE uncertainties are smaller compared to t

AERONET Level 2:

only 7 matches

AERONET Lunar:

no match within 30 min,

comparison within 10 hours give correlation > 0.6

from Larisa Sogacheva, FMI (EVID-36), see poster 34

Monthly composites

MSI AOD670 202502

Validation with AERONET

 Correlation between MSI and AERONET lev 1.5

JAXA

· e e sa

- * is high (R = 0.79 (670 nm) R = 0.80 (865 nm))
- AOT 670 above 0.2 is biased low
- AOT is not retrieved over the bright surface

 The data shows some spread around the 1:1 regression line, but the relation between MSI AE and AERONET AE is weakly linear.

ATL-ALD AOT at 355 nm vs. AERONET lev 1.5

Correlation between AOT at 355 nm from ATL-ALD (filtered) and AERONET lev 1.5

AOT at 355 nm

- N = 1001 matches
- R = 0.6
- slightly low bias at AOT above ~0.2

AOT uncertainties

 EarthCARE uncertainties are slightly smaller/comparable to AOT _{EarthCARE} – AOD _{AERONET}

JAXA

esa

• (2)

ATL-ALD AOT 355 nm vs. AERONET lev 2 & lunar

Correlation between AOT at 355 nm and AERONET lev 2.0 and lunar data

AOT at 355 nm

- N = 72 matches
- R = 0.77

JAXA

· e e sa

- AOT at 355 nm
- N = 204 matches
- R = 0.3

Summary

- Product specific uncertainty treatments in ATL and MSI datasets
 - ATL-EBD calculated uncertainties, as expected reduced with averaging
 - ATL-ICE effective radius given with fixed 50% relative uncertainty
 - ATL-ALD quality status (-1 cloudy) requires update ("in process next baseline"), preliminary post-processing using ice mask for filtering: high uncertainties related to clouds -> reasonable uncertainty distribution
- Evaluation of MSI-AOT and ATL-ALD AOT using AERONET Level 1.5 (Level 2.0 and Lunar) data
 - Using spatial temporal correlations: 50 km and 30 minutes
 - Empty AOT data in MSI-AOT when quality status 4: no retrieval attempt due to bad or missing input data (user unfriendly ?)
- Initial evaluation of MSI-ATL AOT 670 and 870 nm, Ångström exponent, and uncertainties
 - around 500 matches found, no retrieval over bright surface
 - high correlation, AOT at 670 nm: R between 0.63 to 0.79, and for AOT 865 nm: R = 0.8
 - AOT at 670 nm is low bias above ~0.2
 - Ångström exponent: spread around the 1:1, weak correlation
 - Uncertainties: 670 nm lower than AOT _{EarthCARE} AOD _{AERONET} & higher uncertainty values, 865 nm: low values
- Initial evaluation of ATL-ALD AOT 355 nm and uncertainties
 - around100 matches
 - R = 0.6, weak low bias
 - EarthCARE uncertainties are slightly smaller/comparable to AOT EarthCARE AOD AERONET