
CPR Calibration H. Horie, Y. Ohno, K. Kanemaru, Y. Hagihara and H. Hanado NICT

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop 14 – 17 January 2025 | VIRTUAL EVENT

CPR Overview

CPR L1b Product (Major Items): Reflectivity Factor (Z factor) Doppler Velocity (Vd) Surface related product

CPR L2a (CPR ECO) Product: Integrated Z factor (1/10km) Integrated Vd (1/10km) PIA: Path Integrated Attenuation Mirror Flag/Clutter Echo Vd folding/NUBF cprrection

Major Calibration/Validaion Items Z factor Doppler Velocity

CPR Calibration Concept

Basic Theory (On-board Calibration)

- Before launch, CCDB (Calibration Characterization DataBase) is established form system test.
- During level 1 processing, obtained data is converted by temperature telemetry and CCDB.
- On board equipments (ex. Power monitor & Doppler Reference Signal for transmitting power, noise diode & normal load for receiver gain) are used to compare level 1 processing result.
- Health check by Interncal Calibration Mode operation

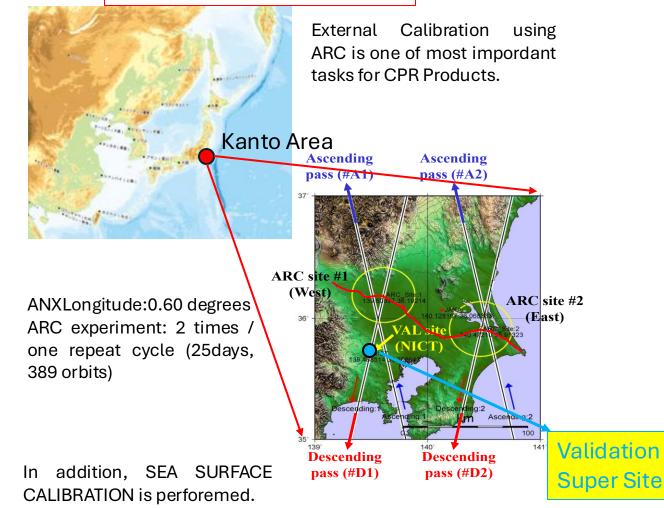
External Calibration Objective

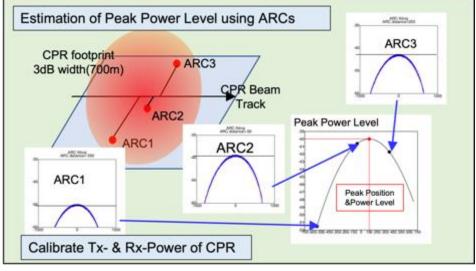
- CPR Radar Parameters (ex. Transmitting Power, Receiver Gain, etc) are measured for helth check of hardware.
- CPR Radar Parameters are checked from trend of measured data for long period.

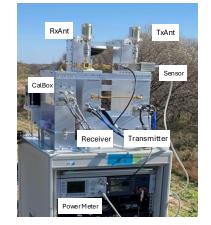
ARC Calibration

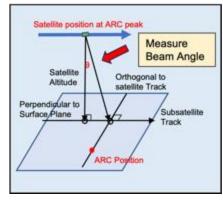
- CPR antenna beam pointing measurement (enough for cloudy day)
- CPR transmitter and receiver measurement individually (need sunny day)

Sea Surface Calibration


• CPR Overall Sensitivity measurement

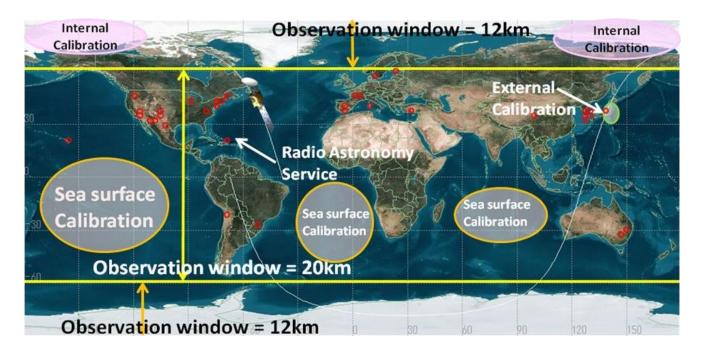

CPR ARC Calibration


CPR Calibration Area

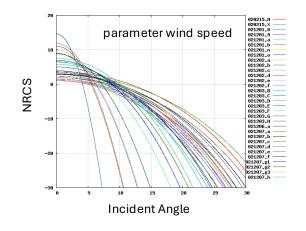

Peak Level Estimation using ARC

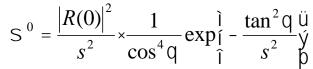
ARC: Active Radar Calibrator

Beam Position Estimation



CPR Sea Surface Calibration using Roll manouevar operation


Sea Surface Calibration Area (far from RAS site)

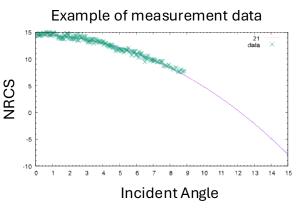

Spacecraft operates roll manouevar operation which is that its roll angle changing constant angular velocity from 0 to 10 dregree.

Sea Surface Calibration

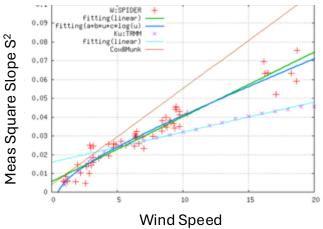
Using Sea Surface Scattering mode, S^2 and $|R(0)|^2$ are function of wind speed, and created empirical formula using SPIDER data.

Sea Surface Scattering Model

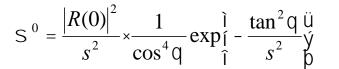
- σ⁰: Normarized Radar Cross Section
- θ : incident angle to sea surface
- s²: Mean Square Slope (as function of surface wind speed)
 R(0): Fresnel Coefficeint (as function of suface wind and temperature)


(Valenzuela, 1978)

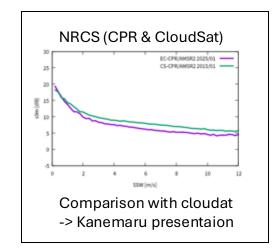
CPR Sea Surface Calibration using Roll manouevar operation


Sea Surface Calibration Method

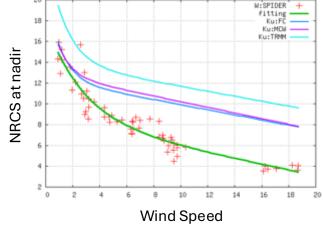
- From meaurment result, S2 is calculated with fitting.
- From S2, wind speed is esitmated from empirical model.
- From wind speed, R(0) and NRCS is calculated from emprirical model.
- Compare estimated NRCS and measurde NRCS, the result is to be calibration factor.


(For L1b data, atmospheric attenuation is not corrected.)

Emprical Model form SPIDER (attenuation is corrected.)



Sea Surface Scattering Model



- σ⁰: Normarized Radar Cross Section
- θ : incident angle to sea surface
- s²: Mean Square Slope (as function of surface wind speed)

R(0): Fresnel Coefficeint (as function of suface wind and temperature) (Valenzuela, 1978)

Emprical Model form SPIDER (attenuation is corrected.)

NICT

NICT Koganei (Validation Super Site in Japan)

In addition, many Lidars (NICT, NIES, TMU and Kyushu-U) and oether instruments* are operated here.

* MicroWave Radiometer, Wind Profilier, Sky-Camera, etc.

Sensitivity -40dBZ @ 15km height for integration 1 seconds

One Dimentional Scanning 750m @ 5 km height Sensitivity: -26dBZ @ zenith -20dBZ @ scan edge

External Calibration Activity

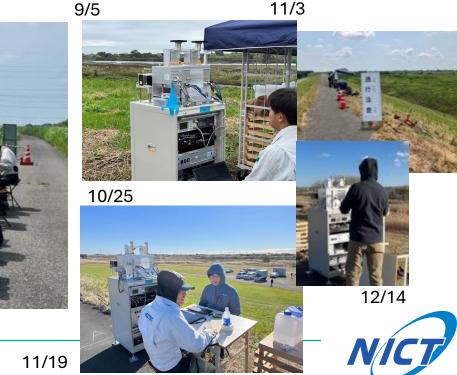
NICT conducts the external calibration using ARC (Active Radar Calibrator) for CPR at Tone-river area, which is needed to decide the exact values for CPR measurement.

Nominal Orbit 1

Nominal Orbit 2

The 7 ARC experiments had been performed.

Last 5 experiments data are available for CPR calibraion. Currently under evaluation for these data.



8/9

11/3

1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

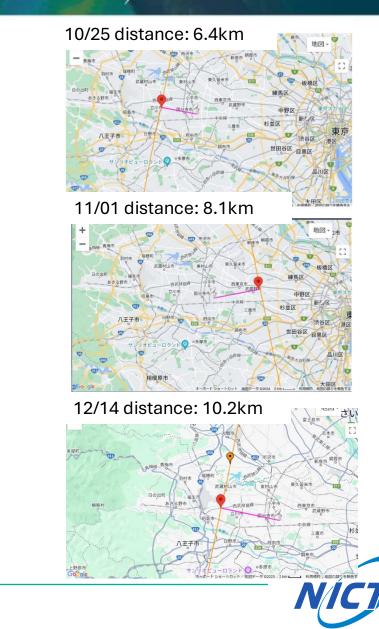
External Calibration Activity

ARC Experiment History

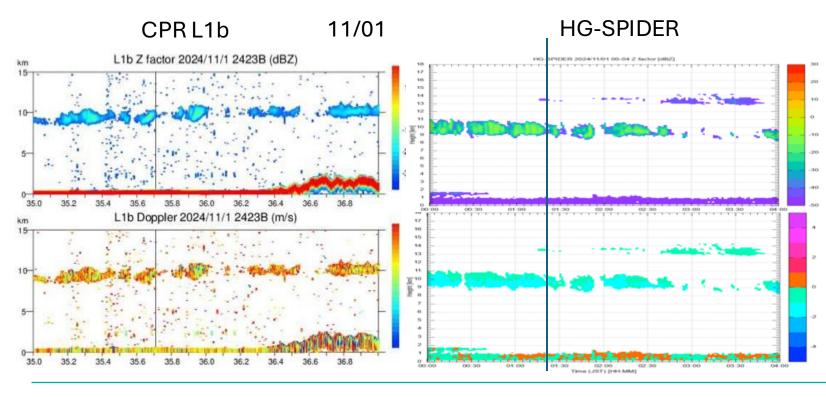
- N/A 2024/07/05 Canselled due to HPT OFF
- #00 2024/07/18 Not used to obtain radio station license
- #01 2024/08/09 Failed due to wrong polarization
- N/A 2024/08/29 Canselled due to satellite track shifted
- #02 2024/09/05 Succeed (Linear polarization)
- #03 2024/10/25 Succeed (doubtful due to Power Sensor failed**)
- #04 2024/11/03 Succeed (ARC#3 Power Sensor failed*)
- #05 2024/11/19 Succeed
- #06 2024/11/28 Canselled due to HPT OFF
- #07 2024/12/14 Succeed
- #08 2024/12/23 Canselled due to HPT OFF
- #09 2025/01/17 Planned
- #10 2025/02/02 Planned

CPR-Tx, ARC-Rx Result

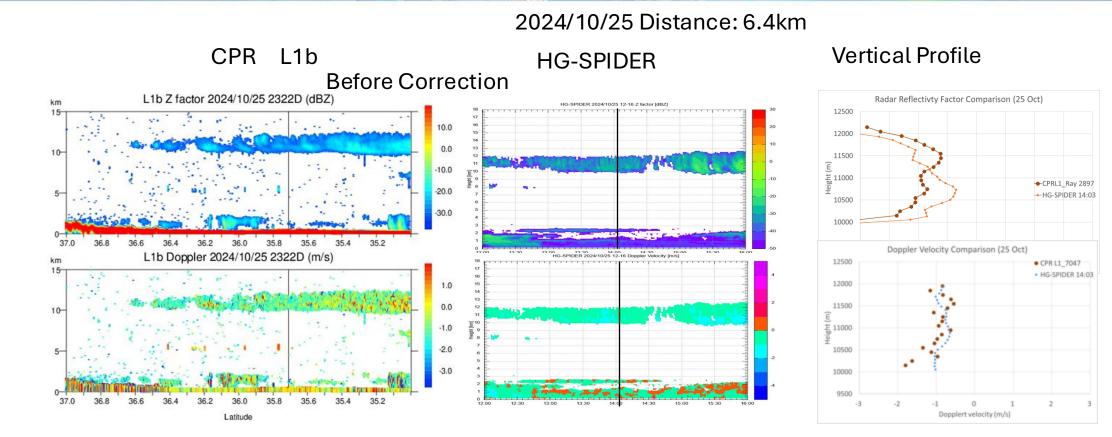
No	Date	Difference
#02	2024/09/05	-2.19dB
#03	2024/10/25**	-3.68dB
#04	2024/11/03*	-3.11dB
#05	2024/11/19	-2.60dB
#07	2024/12/14	-2.30dB


From this result until #05, Calbration Factor -2.4dB is proposed for CPR-Tx and measurement accuracy is 0.5dB.

Current Version of L1b (vCa) is used this Calibration Factor.


CPR L1b Validation

○ Machup with HG-SPIDER at NICT Koganei (direct comparison)

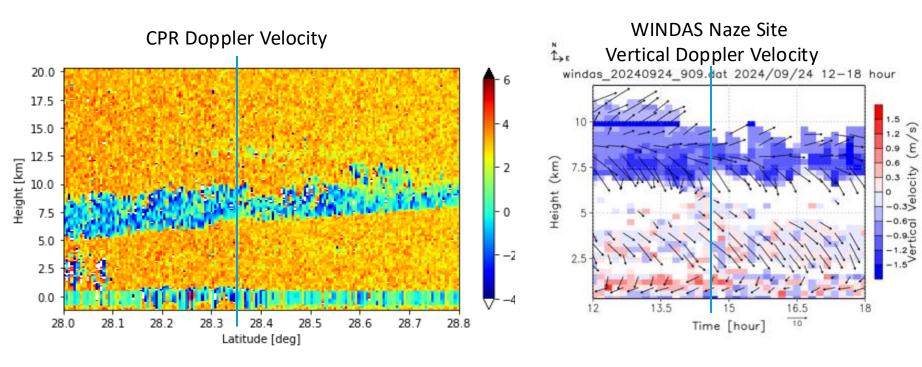

- 10/06 Ascending (no cloud echo)
- 10/25 Descending (cloud echo exist, distance: 6.4km)
- 11/01 Ascending (not enough cloud echo, distance: 8.1km)
- 12/14 Descending (not enough cloud echo, distance: 10.4km)

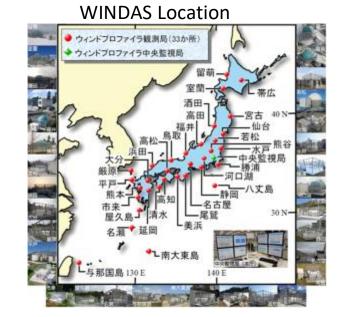
1st ESA-JAXA EarthCARE In-Orbit Validation Workshop | 14 – 17 January 2025 | VIRTUAL EVENT

CPR L1b Validation (HG-SPIDER)

Zfactor

Vd


For direct comparison, the distance is slightly large for considering as the same cloud systems. Statistics comparing is also cosidered.



CPR L1b Validation (WINDAS)

JAXA @esa

- WINDAS (WInd profiler Network and Data Acquisition System) are pperated by JMA (Japan meterological agency) for 33 locations in Japan (Right figure). The observation period is 10 minutes.
- Matchup scene with WINDAS is only one times for July to September showed below, but it is 5 times for Octorbar.

(by. Ohno) → Ohno-san's talk

- Explained CPR calibration concept
- Explained ARC externcal calibration concept and results
- Explained Sea surface calibration concept
- Introduced CPR L1b Zfactor and Vd Validation with HG-SPIDER (direct comparison)
- Introduced CPR NRCS data comparison with that of cloudsat
- Introduced CPR L1b Vd Validation with WINDAS