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A brief introduction

Hello, it's Patrick!

e Internal Research Fellow @ ESA since 12/2023

e before: PhD @ TUM in Remote Sensing,

satellite image reconstruction
uncertainty quantification
sensor & data fusion

change detection
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- flood inundation map forecast

e short-term forecasting of 1) storm surges & 2) flood maps

Small Island Developing
States

potential ROI: 13 000

Take urgent action to combat climate change and

- Mediterranean sea, EU overseas, developing states its impacts




Overview: Needs & Interests

More meteorological events that drive compound
coastal flooding are projected under climate change

Emanuele Bevacqua 8, Michalis I. Viousdoukas, Giuseppe Zappa, Kevin Hodges, Theodore G. Shepherd

Douglas Maraun, Lorenzo Mentaschi & Luc Feyen

Communications Earth & Environment 1, Article number: 47 (2020) | Cite this article

Article | Open access | Published: 16 April 2020

Sea-level rise exponentially increases coastal flood
frequency

Mohsen Taherkhani, Sean Vitousek E, Patrick L. Barnard, Meil Frazer, Tiffany R. Anderson & Charles H.

Fletcher

Scientific Reports 10, Article number: 6466 (2020) ‘ Cite this article

Satellite imaging reveals increased proportion of
population exposed to floods

B. TeIImanE, J. A Sullivan, C. Kuhn, A. J. Kettner, C. S. Doyle, G. R. Brakenridge, T. A. Erickson & D. A

Slayback

Nature 596, 80-86 (2021) | Cite this article

Climate change’s impact on coastal
flooding to increase 5-times over
this century, putting over 70 million
people in the path of expanding
floodplains, according to new UNDP
and CIL data

- 8
K

(0]
(dp)
QO

Related Frameworks & Initiatives
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Overview: Background

STORM TIDE
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STORM SURGE

Mean Sea Level
PREDICTED TIDE

e static, but subject to climate change

Tides
e rhythmic, driven by astronomical matters

Storm surge

https://oceanservice.noaa.gov/facts/stormsurge-stormtide.html ° dynamicl caused by extreme weather



Overview: Needs & approach
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Needs

o More meteorological events that drive compound
coastal flooding are projected under climate change

Emanuele Bevacqua E, Michalis I. Vousdoukas, Giuseppe Zappa, Kevin Hodges, Theodore G. Shepherd,

reana Iys I S / Douglas Maraun, Lorenzo Mentaschi & Luc Feyen

I si m u I a tl O n S Communications Earth & Environment 1, Article number: 47 (2020) | Cite this article

Article | Open access | Published: 16 April 2020

Sea-level rise exponentially increases coastal flood
frequency

Mohsen Taherkhani, Sean Vitousek E, Patrick L. Barnard, Neil Frazer, Tiffany R. Anderson & Charles H.

Fletcher

Scientific Reports 10, Article number: 6466 (2020) ‘ Cite this article

Our approach

e combine Al forecasting with data from
- dense satellite observations
- sparse in-situ recordings
- static geospatial characteristics



Map of in-situ gauges & cyclone tracks 2014-19
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Task & experimental setup

- W"‘“-‘."‘W " Task

=== o IN: time series data of

e n h r e .i" 1. sparse in-situ tidal gages
- - 2. ERA5 atmospheric state
—_—— h"j " _‘F -, s ‘ 3. ocean state simulations
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(a) In situ time series. (b) Input (c) Target
Input gauges 1 forecast trained W|th t|da| gauges
2. and with ocean state
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Evaluation gauges

Experimental protocols
@ ¢ P P
Q a) hyperlocal:
@ @ hold-out target gauges are provided

within input time series
O Comext gauees b) densification:
@ © Holdout gauges hold-out target gauges are NOT provided

within input time series

a) Hyperlocal
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b) Densification




Our approach

Input sequence of length 7' Output for lead time L
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Network architecture & technicalities

First, each feature (or channel)
is scaled by the corresponding
v parameter,

In a fully-connected network,
FiLM applies a different affine
transformation to each feature,

Then, each feature (or channel)
is shifted by the corresponding
B parameter.

e U-Net backbone, with a lightweight temporal attention module

e temporal conditioning imputes lead time dependency via Feature-wise linear Modulation (FiLM)

Densification

e CONV kernels at the output layer are broadcasting predictions across (un-)labelled pixels

e additionally: input data dropout, supervision on auxiliary output

In a convolutional network,

FiLM applies a different affine
transformation to each channel,
consistent across spatial locations.
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Outcomes: Main results

Model

Hyperlocal Densification

1 MAE (std)

1 MSE (std) L MAE (std) | MSE (std)

seasonal average

input average

input extrapolation
GTSM extrapolation [ 1]

0.281 (0.313)
0.267 (0.295)
0.182 (0.239)

0.177 (0.539) — —
0.158 (0.452) — —
0.090 (0.342) — —
— 0.351 (0.643) 0.536 (4.744)

LSTM[!1, 27]
ConvLSTM [55, 7]

0.166 (0.282)
0.162 (0.267)

0.107 (0.759) — —
0.098 (0.691) — —

FiLM U-TAE [/, 27]
MaxVIT U-Net [ 1, 55]

Results

0.158 (0.209)
0.160 (0.212)

0.069 (0.248) 0.190 (0.260)  0.104 (0.535)
0.070 (0.263) 0.178 (0.273) 0.106 (0.587)

e the hyperlocal setting is easier than the densification setting

-> input gauges are informative
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e all deep learning approaches outperform conventional approaches, transformers outperform LSTM models

e FiLM U-TAE outperforms MaxVIT U-Net

-> temporal attention is more beneficial than spatial attention



Outcomes: Errors as a function of location
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Outcomes: Ablation experiments

Table 2. Repeated Measures. Evaluation of FILM U-TAE with
varying numbers of input time points 7', flexibly accommodated
for via temporal self-attention. Longer inputs tend to be beneficial.

Table 3. Lead Time. Evaluation of FiLM U-TAE with varying
lead time offset L, modifiable thanks to lead time conditioning.
Storm surge forecasts become more challenging the larger L gets.

input length T | MAE (std) | MSE (std) 1 NNSE leadtimet | MAE (std) | MSE (std) T NNSE
6 0.194 (0.282)  0.115(0.587) 0.551 4 0.169 (0.254)  0.093 (0.543)  0.583
12 0.190 (0.260)  0.104 (0.535)  0.556 6 0.182(0.269)  0.106 (0.551) ~ 0.552
18 0.180 (0.230)  0.085 (0.510) 0.573 8 0.190 (0.260)  0.104(0.535)  0.556
24 0.180 (0.230)  0.085 (0.510) 0.571 10 0.191(0.273)  0.111(0.553)  0.540
12 0.196 (0.273) 0.113(0.539) 0.536

Table 4. Input ablations. Evaluation of our models with varying
inputs. The outcomes underline the relevance of each modality.

Table 5. Output ablations. Evaluation of FILM U-TAE with
varying output channels. Ablations show all outputs” significance.

input ablation 1 MAE (std) | MSE (std) T NNSE

full model 0.190 (0.260)  0.104 (0.535)  0.556 output ablation I MAE (std) | MSE(std) 1 NNSE
no GTSM input 0.207 (0.284)  0.124(0.543) 0.513 full model 0.190 (0.260)  0.104 (0.535)  0.556
no ERAS input 0.189(0.273)  0.110(0.545) 0.542 no GTSM supervision 0.194 (0.276)  0.114 (0.544) 0.534
no data dropout 0.217(0.289)  0.130(0.539)  0.500 GTSM, instead of densification  0.210 (0.246)  0.105 (0.536) 0.554

no FiLM, L = 8 fixed 0.183(0.273) 0.108 (0.567) 0.547

Results

e more input time points are more informative
e the longer the lead time, the more challenging the forecasting
e all input and output modalities are meaningful and informative



Application to MedCyclones
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Goal:

e model storm surge in the MedSea

Challenge:

e fewer data: cyclones, storm surge & monitoring

e this is problematic for data-driven approaches!

Approach:

e train a model on global data, then run inference
on the MedCyclone event of our interest

e future directions: fine tuning, conditioning etc



Cyclone Zorbas, 27.09 - 02.10.2018
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Zorbas:

e reported surge varies within 0.8 - 1.4 meters

Data:

e gauges by UNESCO/IOC Sea Level Monitoring

e track information by Flaounas et al 2023

Challenges:
e sparse measurements, 3 gauges within 150 km

e missing data: - NaN in tidal gauge observations
- for model forcings (GTSM til '18)


https://ioc.unesco.org/

QOutcomes

MaxVit U-Net:
MAE: 0.0526, MSE: 0.0046
U-TAE:
12 h input, 6 h lead
MAE: 0.0329, MSE
24 h input, 6 h lead
MAE: 0.0376, MSE
12 h input, 3 h lead
MAE: 0.0310, MSE
12 h input, 9 h lead

MAE: 0.0461, MSE
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: 0.0017

: 0.0022

: 0.0017

: 0.0032



Conclusion
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Take-home messages:

e a new approach for short-term storm surge at
ungauged sites is introduced, comprising:

- a novel multi-modal global dataset

- a spatio-temporal neural network

e for regional analysis over the MedSea:
- global data facilitate local modelling

- future research:
adaptation, conditioning, fine-tuning, ...




That's it!
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Implicit Aééim?ltion Spars Situ Data for
Dense & Global Storm Surge Forecasting
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Patrick Ebel, Brandon Victor, Peter Naylor, Gabriele Meoni, Federico Serva, Rochelle Schneider;
Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition (CVPR)
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Thank you.
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