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ESA-DEVELOPED EARTH OBSERVATION MISSIONS
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The Open Big Earth Data

EO & climate data volume (PB)
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Data Volume (GB)

| |
® Classification
® Segmentation
© Regression
10°1 @ Object detection
@® Others
$
° @
&
3 |
@
0
10 = -
. .
=] & 53
°* o 4 3 #
4 ° © °
102 o = o ¢
H @
@
[¢]
2008 2010 2012 2014 2016 2018 2020 2022 2024

Publication Year

Zhu et al., On the Foundations of Earth and
Climate Foundation Models, under review.
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Al and Data Science in Earth Observation

Explorative Signal Processing Methods
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What can MLg4Earth offer?

A few motivating examples of tackling societal grand
challenges



Urban Growth Happens Mostly in Developing Areas

.o 2 .' . oo A '. . . .
. .-. R ..o.’.' .‘. . .:‘: - :' E . o..-. 9
. %‘e! Tl $-Te: 0 e . &b ¢ o v
’ dedin Lo O 0w @ 5 4 . & . o * o
‘ * . - o o .‘.. . o.." e o .
. ' o . .‘ .. s w .. :.ﬁ. .. .‘. “.,‘"‘o' 3 — .-. .
8 AR+ T TR S R
, LA ) (4 Y e 2
L o . .-.-' % o 550 PRl Y. . ‘i'-.:' .'". -.... o
| -,‘ L 3 o o'i:':. ..¢ 5 = .l o PR Oiondaing

.s'. ' & '..“e"g'.‘. . : 4
.... g ! . . o. .
’ . N .9 . .
' ' - B e .,
World City Populations e . o 2

1950-2030 hug " o Y *

’ . . o N - .
Circle areas proportional to city populations in: N - ‘ .
. %00 Poul . .

@0 @0 2005 203 I Ml

— 20 million » ‘. _J—Y
/—\ —5 million Suenos Alves

\&@/—1 million

Data: United Nations World Urbanization Prospects
2014, Minimum city population threshold: 300k.

Cartography: D. A. Smith, CASA UCL.



Open Data for Urban Research?

> 4.1 Billion buildings in the world (UN, 2019)

604 Million building footprints in OSM < 15%

Only 3% buildings in OSM have height information < 0.5 %

T“TI Status: April 16, 2024



Building Footprint Extraction from NewSpace-Satellite Images

A Graph Convolutional Recurrent Neural Network trained with
satellite image and GIS building footprint pairs from 74 cities
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A: Data acquisition
1. Urban detection
2. Image querying

B: Analysis-ready data
3. Radiometric calibration
4. Mosaicing

C: Machine learning pipeline
5. Training data preparation

6. Machine learning methods
7. Model training

D: Inferencing
8. Parallel processing
9. Model averaging

E: Post-processing
10. Editing/ Filtering

T




Data Overview T

Sensor: Planet Doves

# of images: 779072
# of 0.2 degree tiles: 45065




Global Buildings

Red: Google Blue: OpenStreetMap




Two examples

* Marrakech, Morocco

* Cairo, Egypt




Cairo, Egypt
OSM vs.
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Solar Potential Analysis of Global Buildings
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Global 3D Building Modeling from Single Remote Sensing Images

GBM - 189 cities, > 242 k patche

Imagery ©2023 NASA, TerraMetrics, Map data ©2023 Google, INEGI



HTC-DC Net: Monocular Height Estimation from Single Remote Sensing Images

—Ill-posed problem

— Use of ViTs for enforcement of global consistency . _
— Classification-regression paradigm Classification egression
. 9 P 9 prediction of bin edges and probabilities Smoothing of

— Distribution-based method { I | classification outputs
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— Long-tailed distribution of the height values
—Head-Tail Cut (HTC) for distinct treatment of

background and foreground
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Test Building Height Accuracy of 3.8m on 21 cities across the globe
Global inference will be finished by the mid of May!
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Monitoring the Antarctic Coastline

Sentinel 1 GRD @ 40m

Jun 2017 — Dec 2018

Dense Annotations: Land / Water

~ 510,000 km?2 Training
~ 220,000 kmz? Validation

Heidler et al., TGRS, 2021



HED-UNet: Combined Segmentation and Edge Detection for Monitoring the
Antarctic Coastline

— coastline detection as a dual inference task.
— predictions at multiple resolutions
— a hierarchical attention mechanism

TI.ITI Heidler et al., TGRS, 2021




Results — Qualitative

Input

Ground Truth

UNet4

UNet6

HED-UNet6

Heidler et al., TGRS, 2021



A High-Resolution Calving Front Data Product for Marine-Terminating Glaciers in

Svalbard

Features:
— 149 marine-terminating glaciers in Svalbard

— 124919 glacier calving front positions during
the period of 1985-2023

Lietal., ESSD 2024
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Calving Front Change Rate & Spatial distribution of different glacier types

Lietal., ESSD 2024
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Correlating with Environmental Factors
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Ocean Temperatures are a much stronger
driver than air temperatures
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What are the open challenges in ML4Earth?



Open Issues in Al4EO

Re-implant physics, Bayes
and domain expertise

Reasoning

Uncertainty
&
um ml“l“m“ﬁ./ >
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« ﬁmm!l
Explainability Green Al Quantum Machine Learning Ethics

Image Sources:

D-Wave Systems, Inc., wikimedia common
Trent Kuhn, Creative Commons


https://thenounproject.com/strppngynglad

Physical Data-guided Machine Learning (PDgML) for Urban Flood Modeling and

Forecast

Inputs:
Coordinates X, Y;
Time domainT;
Initial conditions (ho); ™~
Terrain (DEM);
Rainfall;

Boundary conditions
(Building);

Erarl ] 5,
».{)—» F, ‘_>_> F, {—)(Q"\:x
- it | —

Adaptive Fourier Neural
Operator Network (PDgML)

e
Fourier layer

-3

Outputs: Loss function for Urban Flood
Water height H; a.  Data Loss:
X-direction Velocity of Lava J’jf*‘* w and @ are simulated and predicled water (1, U, V)
the water U . b. Building condition Loss:
I

. . . Cm. = {ilyq — #lan £ represents H. U, V equal to 0 inside the building
Y-direction velocity of e S
the waterV; Lyc = filge, — glas,

§-Tool B Mxomum

Flood Forecast on Berlin | (2 hours)

Eroe 4 Naomem

~

i MAE (Absolute

Predicted error. water MAPE (Relative
Variables y error, water pixels)
pixels)
i
p Water(HH)e'ghtS 0.0065 (m) 0.2202 (22.02%6)
X-direction
L} ) o
velocity (U) 0.0011 (m/s) 0.3182 (31.82%)
1
: Y-direction
a 0,
~ velocity (V) 0.0011 (mis) 0.2838 (28.38%) )

-

Study Regions

XJ-Toer ¥ Maxrmy m

Transferability analysis of different Berlin regions (Berlin II)

~N

Error M Maximum

Predicted Variables MAE (Absolute error,

2 water pixels)

’ Water Heights (H) 0.008 (m)

" X-direction velocity (U) 0.014 (m/s)
Y-direction velocity (V) 0.016 (m/s)

J




Physics-informed Machine Learning (PiML) for Large-scale Flood Modeling and

Forecast

Geometry-adaptive physics-informed neural solver (PiML)
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Flood depth validation over a 14-day period
(flood simulation from August 18th to August 30", 2022)
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PiML-based flood forecast achieves an average MAPE of 14.93% for 14-
day flood depth predictions. (Pakistan flood prediction in 2022)



L
p

bugay WORKSHOP 2024 = Machine Learning for Earth System Observation and Prediction —c ECMWF @ esa




Hydr,
PML

MODEL ZOO

More than 100 methods
of different physics-aware
machine learning

DATASETS

Standard and large-scale
datasets for process-based
hydrology, such as floods,

landslides and other dynamic
process datasets

o
o
©

BENCHMARKS

Benchmarking results for
different hydrology applications
using standard datasets

CASE STUDY

Different application case
studies and PaML-based
method recommendations

Rainfall-runoff Modeling and Forecast

Rainfall-Induced Landslide Modeling
and Forecast

Process-based Hydrology in Physics-aware Machine Learning (HydroPML)

o
1%

Flood Modeling and Forecast

~ -]

Rainfall-runoff-inundation Modeling
and Forecast
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Human-centered Al analytics of EO data




ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language

Geo-Foundation Models
towards the top and bottom left sections, and small crop areas are scattered sparsely, with low presence and no

. @ ChatGPT-4V
distinct shapes or significant coverage. This image is characterized by the dominance of grass areas and a

In this image, the developed areas @ ChatGPT-4V  notable presence of developed areas, particularly in the bottom right quadrant.
manifest as a branching network, A

perhaps indicative of transportation
routes or urban sprawl, interspersed
throughout a substantial presence of
frees. Small, isolated pockets of water
are scattered, none large enough to
form substantial watercourses or lakes.
Sparse instances of crop cultivation
are noted, with minor patches
breaking the dominance of the other
vegetation. Grasslands are widely
distributed, with substantial coverage,
suggesting a landscape that balances
natural tree coverage with human
development and open grassy areas.
The overall theme presents a mixed
use of land, where nature and
development coexist, but with a
clear predominance of tree cover

3
In this image, ¢ == areas predominate, especially in the middle and top left, with substantial coverage observed
throughout the image. Water bodies are less extensive but have intricately meandering shapes, mainly
concentrated towards the middle and top right regions. Developed areas have a more concentrated footprint in

the bottom right region with geometrically shaped patches throughout. Tree coverage is significant but mostly

d @ ChatGPT-3.5

The image primarily consists of crop
fields, which are most dominant across
all sections. In the top left, there is a
significant expanse of crop fields, with a
small area of grass and developed land.
Moving to the top right, crop fields
continue to dominate, followed by a
smaller developed area and arassy
patches. In the bottom left, the
landscape is mostly covered by crop
fields, followed by a few trees and a
small amount of gra==. The bottom right

\and grassy fields. / also exhibits a large area of crop fields,
Ui 5 ‘1 accompanied by a small developed
The image exhibits varied land cover types across different spatial locations. The dominant land cover type is developed ™\ | area and a small portion of gras<. In the
area, which occupies an exira large fraction of the overall area. In the top left portion, the land cover primarily comprises middle section, crop fields are again the
developed area, followed by a small quantity of iree, and extra small quantity of grass. Moving to the top right, the main feature, with a small number of

developed area is still the most prevalent, with an extra large part, accompanied by an extra small part of water and an
extra small part of iree. In the bottom left, the area is mainly covered by developed area, followed by a small portion of
tree and an extra small quantity of orass. The bottom right section is also dominated by developed area, with a small

trees and a tiny developed area.
Overall, the image depicts a

quantity of iree and an extra small quantity of water. In the middle, the land cover consists of an extra large quantity of Iandscap(-_! predominantly e
@ ChatGPT-3 5 developed area, an extra small amount of iree, and an extra small portion of water. Overall, the image depicts a characterized by crop cultivation,
*~ landscape dominated by developed areas, with variations in the presence of trees, grass, and water in different with minor presence of developed
\. spatial locations. 7 \areas, trees, and grass. >




Uncertainty Quantification

Factor | (epistemic) Factor Il (aleatoric) Factor IIl (epistemic)
Variability in Real World Error and Noise in the Errors in the Model Strucutre
Situations Measurement System -
Neural network design
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How Certain are the Uncertainty Estimates?
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Wang et al., GRSM, under review



Can Human Uncertainty Improve Model Performance in Earth Observation?

One-hot Labels (CE Loss)
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Koller et al, 2023



Ethics in AI4EO

aifterant group data portobiity certrul refovanae

Nindomuntol namm  graater atention gremor cornroh Improved image feschution
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Earth Observation and
Artificial Intelligence

Understanding emerging ethical issues and opportunities

__data protection

MRINALINI KOCHUPILLAL -, MATTHIAS KAHL, MICHAEL SCHMITT -,

HANNES TAUBENBOCK, AND XIAO XIANG

thics 1s 2 central and growing concemn in all applications
tilizing srifickal intelligence (Al). Earth observaticn
(EO) and remote sensing (RS) mesearch relies heavily on
both big data and Al o machine learning (ML), While this
refiance iv not mew, with increasing image resolutions snd
the growing sumbser of TOY/RS awe canes that have a dieect
impact on governance, policy, and the lives of people, ethi.
cal wvues are taking center stage. Tn this article, we provide
scientists engaged with Al for FO (AMEO) research, 1) a
practically useful overview of the key ethical imes emerg.
ing in this Giebd, with concrete examples from within EO/RS
1o explain these issues. and 2) a first road map (Mowchart)
that sclentises can wse 10 identify ethical issues in their on-
going research, With this, we aim to sensatize scientists to
these lsaues and create 3 bekdge to faciliate constructive
and regular communication among sclentists engaged in
AMED pesecarch, on the one hand, and ethios rescasch, on
the other hand The article also provides detailed ilbustrs-
tharm froen four AEO waearch fiekds 10 explain bow wi-
entists can redesign research guestions 1o more ef fectively
grab ethical opportunities to address real-world problens

lbq-hlbc“ 1 PRS2 ey
Lhte of cmrvomt veniox |7 Meowomber 202

MIZ2WTCNAME

that ase otherwise skin w ethical dilemmas with no win-
win solution In sighe. The anticle concludes by provading

dationy to instit that want to support ethi-
cally mindful AMEO research and provides suggestions for
future reseanch in this fickl,

INTRODUCTION
Rag data Yies at the heart of many FO and RS sosearch and
developmeent activities. In fact, applications and algorithms
emerging from RS and FO research sely heavily on big data
collected via satellises, unmanned aerial vehicles, drones
and other state-of-the-art devices. At the same time. RS and
EO research is rapidly transfoeming in the era of Al and
ML Al and ML permit the petabytes of data collected by
astellites and other EQ/RS devices w0 be systemarically ar-
ganieed and used o train wodehs that can peedict 4 buge
diversity of evente objects, and clrcumstances, ewn in the
abwence of lack of sorcalled ground truth

The chose relationship between (big) data and Al s teflocs
od in the German Data Prhicy Commission’s understanding
of “artificial intelligence” s “a collective term for technolo-
gies and their applications which peocess potentially very
larnge and beterogeneous data sets wing complex methods
madeled on human intelligence (o arrive at a result which

1EEE CEOSCIENCE AND SEMOTE SENSING MACALINE  MONTH 1073



Hey, how about Foundation Models?



What is a foundation model (FM)?

A model that: Link to paper:
— is trained on broad data (generally using self-supervision), and El .
— can be adapted to a wide range of downstream tasks.

Tasks
du A
Par= ~Vp+uV*u+F

Question 7
Answering ' %

w
Data & ' m
&

ron || =
Information J\

1 h.
J images %, " Extraction
r - Adaptation
I\\e Training Foundation image ‘

Speech ’
’ Model 0 Captioning [aa ]

Structured v

* Data
=*, Object

> < &; C Recognition
30 Signals gury &
. N

A

6’ m i /, \\ e
1 / \ o
--- -G =
Bommasani, Rishi, et al. "On the opportunities
and risks of foundation models." arXiv (2021). Zhu et al., On the Foundations of Earth and
Climate Foundation Models, under review.
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The potential of Earth and climate FMs

— Unlocking the value of big EO and climate data
— Enhancing label efficiency

— Reducing carbon footprints

— Bridging EO and climate science

— Improving Earth system modeling

EO & climate data volume (PB)
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Zhu et al., On the Foundations of Earth and
Climate Foundation Models, under review.
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The ideal Earth and climate FM

Must have features:

1. Geolocation embedding

2. Balanced geographical representations
3. Scale awareness

. «~ E=mc? 1@
4. Wavelength embedding - Ezmel S __
5. The time variable ::::::;2: —%—‘Vpﬁj’—m g &

6. Multisensory
7. Task-agnostic
8. Carbon minimized

Highly desirable features:
9. Uncertainty quantification
10. Physical consistency

11. Al assistants

Zhu et al., On the Foundations of Earth and
m Climate Foundation Models, under review.



DOFA: Neural Plasticity-Inspired Foundation Model for Observing the Earth Crossing

Modalities

— Integrate various data modalities into a single framework adaptively

— Excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining

Unified Multimodal Earth
Foundation Model

P e
e

Downstream Tasky

i = Ghe, Cesa g
TI.ITI m ': I- 5&- University of St.Gallen Qj@:ﬁﬁg ®-lab % gﬁ? g’l

Munich Center for Machine Learning

Xiong et al., 2024



SOTA FMs and gaps

— Most models focus on only one or two of "*must-have” features
— Big potential but gaps exist in connecting EO and climate FMs
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(a) Comparison between EO and climate spatial resolutions. (¢) Climate model comparison.

Zhu et al., On the Foundations of Earth and
m Climate Foundation Models, under review.



The way forward

a) Comprehensive data source
b) Metadata integration

c) Dynamic encoder

d) Spatial-temporal modeling

e) Multimodallearning

f)  Geographical mixture of experts

g) Continual pre-training

h) Uncertainty quantification
i)  Physical consistency

T

b. Metadata

c. Dynamic encoding

f. Unified FM with geographical

a. Comprehensive
data source

) —f:RN—'RM—vg
l

mixture of experts

Model Details

@J
| (100 p-/

e. Multimodal learning J

S

du
P = ~Vp + uV?u + F
V-u=290

i. Physical consistency Self-supervised learning

A .

d. Spatial-temporal modeling -4

_h. Uncertainty quantification

S

- e —

PRI

g. Continual pre-training

Zhu et al., On the Foundations of Earth and
Climate Foundation Models, under review.



What comes after the Foundation Models?



Bundesministerium
fiir Wirtschaft
und Klimaschutz
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ML4Earth Foundation Model Workshop
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Bundesministerium
fiir Wirtschaft
und Klimaschutz
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ML4Earth Foundation Model Hackathon
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I
Al4EO Symposium 2024

Where?
TUM Campus Ottobrunn
Lise-Meitner-Stral3e 9, 85521 Ottobrunn

Free registration at:

When?
July 15-16, 2024




A Few Statements

—Big Earth data and Al4EQO offer invaluable geo-information helping tackling societal
grand challenges

—Towards large scale and actionable geoinformation retrieval and prediction,
fundemental methodological challengues must be addressed, such as uncertainty,
physical-consistency, explainability, transferrability etc.

—Earth and climate foundation models have enormous potential, but we are just
scratching the surface ...

Contact: xiaoxiang.zhu@tum.de ’ @xiaoxiang_zhu
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