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Working hypothesis: improving these profiles (_/
should also improve HRDPS forecasts.

—0.02 0.02 —0.02 0.02 —0.02 0.02

-0.002 0.000 0.002
K/s

Latent Heating Rates [K/s]

3D latent heating field as multitude of 1D profiles
Best result so far obtained with a 152 layer RESNET,

L1 loss function with the Adam minimizer.
For both training and inference, 1D profiles of latent

heating are inferred from 2D precipitation in a local , . Data is divided into
neighborhood. Input: Output: training and validation datasets

Reflectivity at three time steps Profiles of latent heating

L. , HRDPS forecasts every 12h during two months -> ~120 forecasts
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Inference of 1D latent heating from simulated precipitation
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Spatial and temporal coherence Verification results

Precipitation rates of an advancing squall line are closely related

. Unfortunately, experiments conducted with the improved latent heating profiles do not perform as well
to the latent heating "ahead" and "above.'

as the control experiment without.
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Verifications against other types of observations also show deterioration.
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