

AIRBORNE LIDAR MEASUREMENTS: PERCUSION'S CONTRIBUTION TO VALIDATE EARTHCARE ATLID L2 OPTICAL PROPERTIES

S. Groß¹, M. Wirth¹, F. Ewald¹, K. Krüger¹, G. Dekoutsidis¹, C. Heske¹, T. Bodenbacher¹, S. Zechlau¹, J. Windmiller², B. Stevens² + the PERCUSION team ¹German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen ²Max-Planck-Institute for Meteorology (MPI-M), Hamburg

EarthCARE Validation

Sal, Cape Verde

8 August – 6 September 2024

- 10 EC underflights
- 4 overpasses over Mindelo ground station
- 3 coordinated flights (curtain) with ATR (2 direct EC overpass)
- 3 coordinated flights (curtain) with King Air (1 direct EC overpass)
- Coordination with METEOR

<image>

- 6 29 September 2024
- 11 EC underflights
- 3 (+1) flights coordinated with PACE
- Overpasses/measurements near BCO ground station
- various METEOR overpasses

Oberpfaffenhofen

- 5 19 November 2024
- 12 EC underflights
- 2 overpasses (each)
 Lindenberg, Leipzig, Jülich,
 Munich, Antikythera
- 1 coordinated flight (profile) with BAe (FAAM)

3 Location30 Flight33 Underpasses290 Flight hours

https://orcestra-campaign.org/operation/halo.html

-

WALES Lidar system

Airborne water vapor DIAL and HSRL, developed and build at DLR-IPA

Aerosol

- Backscatter coefficient (532 nm, 1064 nm)
- Color ratio (532 nm/1064 nm)
- Aerosol depolarization 532 nm
- Aerosol extinction 532 nm I₂-cell-HSRL
- Resolution (raw data): range 7.5 m, time = 0.2 s (standard products): range 15.0 m, time 1.0 s
- ightarrow Possibility of aerosol classification

Water Vapor

- H₂O mixing ratio (4 wavelengths ~935 nm)
- Resolution: range 250 m, time = 24 s
- Relative humidity (with external temperature data)

→ In-cloud and outside cloud distribution of relative humidity and water vapor

Parameter	WALES lidar
Number of Wavelength @ 935 nm	4
Laser pulse energy 532nm, 935nm,	50 mJ / 40 mJ / 150
1064 nm	mJ
Pulse repetition frequency	2 x 100 Hz
Mie Crosstalk HSRL channel	< 10 ⁻³
Laser Frequency stability 935 nm	< 60 MHz
Laser Frequency stability 532 nm	< 2 MHz
Laser spectral purity	> 99.9%
Telescope diameter	0.48 m
Telescope field of view	1 mrad
Receiver bandpass filter-width (fwhm)	1 nm
Detector type 935 nm / 1064 nm	APD
Detector type 532 nm	PM
Acquisition Method	analog

Wirth et al., 2009 Appl. Phys.

ATLID L2 AER data BL: AD OF: 01193E

BSC cannot capture • profile / sharp upper boundary

16:00:00

Atlid error

80

100

60

Atlid high res

WALES error

WALES 532 nm

- EXC too low (artefact ٠ above clouds?)
- Lidar ratio too high in ٠ upper part of the aerosol layer

High Resolution

ATLID L2 EBD data BL: AD OF: 01193E – Backscatter coefficient

WALES

0.01

- 0.003

- 0.0003

- 3.0·10⁻⁵

Low Resolution

Medium Resolution

ATLID L2 EBD data BL: AD OF: 01193E – Extinction coefficient

ATLID L2 EBD data BL: AD OF: 01193E – Lidar ratio

Data Version 1.1 Processed on 28-02-25 Contact: DLR Institute of Atmospheric Physics Martin.Wirth@dir.de

EarthCARE L2 comparison – 14 Nov. 2024 (OP; ice cloud)

ATLID L2 AER data BL: AD OF: 02640D

0.02

0.04

Backscatter Coefficient [km⁻¹·sr⁻¹]

0.06

0.08

Altitu 15:22:00 15:24:00 15:26:00 UTC Time Aerosol Extinction at 355 nm (High Resolution) ide/km 0 15:22:15 15:22:20 UTC Time Aerosol Extinction [km⁻¹] Atlid error - Atlid high res WALES error Geoid Altitude / km WALES 532 nm

0.5

1.0

Aerosol Extinction [km⁻¹]

1.5

5

EXC

WALES Aerosol Extinction at 532 nm

20

40

Lidar Ratio [sr]

60

80

100

LR

- Good agreement of BSC ٠ and EXC (ATLID higher)
- **Good** agreement for • lidar ratio

EarthCARE L2 comparison – 14 Nov. 2024 (OP; ice cloud)

ATLID L2 EBD data BL: AD OF: 02640D

EXC

LR

WALES Lidar Ratio at 532 nm

Very good agreement of mean particle backscatter profile

•

٠

- ATLID extinction higher than WALES (contradiction to L1 data)
- Lidar ratio slightly higher than in AER product

Comparison of ATLID-L2 EBD and AER product

AER:

- Strong smoothing → Backscatter could not pick up vertical structure and strong boundary in aerosol case
- Lower extinction (ATLID) in aerosol case (not visible in the L1 Rayleigh profiles) → effect from low clouds?
- \rightarrow Impact on lidar ratio?
- Good agreement for cirrus cloud case

EBD:

- Good agreement of the backscatter ratio
- ATLID extinction profiles not following airborne profile \rightarrow effect from a priori LR?
- Lidar ratio does not agree in profile for aerosol case
- Good agreement for cirrus cloud case
- Careful selection which product to use for scientific application.